The flexibility of new age wireless networks and the variety of sensors to measure a high number of variables, lead to new scenarios where anything can be monitored by small electronic devices, thereby implementing Wireless Sensor Networks (WSN). Thanks to ZigBee, RFID or WiFi networks the precise location of humans or animals as well as some biological parameters can be known in real-time. However, since wireless sensors must be attached to biological tissues and they are highly dispersive, propagation of electromagnetic waves must be studied to deploy an efficient and well-working network. The main goal of this work is to study the influence of wireless channel limitations in the operation of a specific pet monitoring system, validated at physical channel as well as at functional level. In this sense, radio wave propagation produced by ZigBee devices operating at the ISM 2.4 GHz band is studied through an in-house developed 3D Ray Launching simulation tool, in order to analyze coverage/capacity relations for the optimal system selection as well as deployment strategy in terms of number of transceivers and location. Furthermore, a simplified dog model is developed for simulation code, considering not only its morphology but also its dielectric properties. Relevant wireless channel information such as power distribution, power delay profile and delay spread graphs are obtained providing an extensive wireless channel analysis. A functional dog monitoring system is presented, operating over the implemented ZigBee network and providing real time information to Android based devices. The proposed system can be scaled in order to consider different types of domestic pets as well as new user based functionalities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038662 | PMC |
http://dx.doi.org/10.3390/s16091384 | DOI Listing |
Brain Imaging Behav
January 2025
Macquarie Medical School, Macquarie University, Sydney, NSW, Australia.
Magnetic resonance imaging (MRI) is frequently used to monitor disease progression in multiple sclerosis (MS). This study aims to systematically evaluate the correlation between MRI measures and histopathological changes, including demyelination, axonal loss, and gliosis, in the central nervous system of MS patients. We systematically reviewed post-mortem histological studies evaluating myelin density, axonal loss, and gliosis using quantitative imaging in MS.
View Article and Find Full Text PDFNat Med
January 2025
Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
Sleep tests commonly diagnose sleep disorders, but the diverse sleep-related biomarkers recorded by such tests can also provide broader health insights. In this study, we leveraged the uniquely comprehensive data from the Human Phenotype Project cohort, which includes 448 sleep characteristics collected from 16,812 nights of home sleep apnea test monitoring in 6,366 adults (3,043 male and 3,323 female participants), to study associations between sleep traits and body characteristics across 16 body systems. In this analysis, which identified thousands of significant associations, visceral adipose tissue (VAT) was the body characteristic that was most strongly correlated with the peripheral apnea-hypopnea index, as adjusted by sex, age and body mass index (BMI).
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Health Sciences, Graduate Program in Public Health, University of Brasilia, Brasília, 70910-900, Brazil.
We compared the BMI-for-age (BMI/A) trajectory of Brazilian adolescents monitored in the primary health care (PHC) setting based on a simulated scenario. We used a real-life cohort of adolescents monitored by the Food and Nutrition Surveillance System (Sisvan) between 2008 and 2018. The LMS method was employed to estimate the simulated BMI/A evolution curve, assuming that the adolescents maintained the conditions observed during their first assessment (simulation curve).
View Article and Find Full Text PDFNat Commun
January 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China.
Visualizing mechanical stress distribution in soft and live biomaterials is essential for understanding biological processes and improving material design. However, it remains challenging due to their complexity, dynamic nature, and sensitivity requirements, necessitating innovative techniques. Since polysaccharides are common in various biomaterials, a biosensor integrating a Förster resonance energy transfer (FRET)-based tension sensor module and carbohydrate-binding modules (FTSM-CBM) has been designed for real-time monitoring of the stress distribution of these biomaterials.
View Article and Find Full Text PDFJ Public Health (Oxf)
January 2025
Division of Nursing, Midwifery and Social Work, School of Health Sciences, The University of Manchester, Jean McFarlane Building, Oxford Road, Manchester M13 9PL, UK.
Background: As the UK COVID-19 vaccination programme progressed, greater emphasis was placed on the implementation of localized targeted vaccination activities to address inequalities in vaccination coverage. This study examines one UK region's approach to the delivery of targeted vaccination activities and identifies key factors influencing implementation.
Methods: Qualitative interviews were conducted with a purposive sample of key individuals involved in vaccination delivery across Greater Manchester (GM).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!