TH9 cell differentiation, transcriptional control and function in inflammation, autoimmune diseases and cancer.

Oncotarget

Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China.

Published: October 2016

AI Article Synopsis

  • Naïve CD4+ T cells can become different types of T cells based on the surrounding cytokines, with TH9 cells being less understood compared to others.
  • Recent research has identified key factors that regulate the development and function of TH9 cells, highlighting their importance in various immune-mediated diseases.
  • Targeting TH9 cell differentiation and activity could lead to new treatment strategies for conditions like allergies, autoimmune diseases, inflammatory bowel diseases, and cancer.

Article Abstract

Naïve CD4+T cells differentiate into various T cell subsets depending on the specific cytokine environment. TH9 cells are less well-characterized than other T cell subsets, and factors that control their development and function have only recently been identified. It is now clear that TH9 cells play critical roles in immune-mediated diseases, including allergic airway, autoimmune and inflammatory bowel diseases, and cancer. Thus, the promotion or suppression of TH9 cell differentiation, transcriptional control and function may provide novel treatments for clinical inflammation, autoimmune diseases and tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342605PMC
http://dx.doi.org/10.18632/oncotarget.11681DOI Listing

Publication Analysis

Top Keywords

th9 cell
8
cell differentiation
8
differentiation transcriptional
8
transcriptional control
8
control function
8
inflammation autoimmune
8
autoimmune diseases
8
diseases cancer
8
cell subsets
8
th9 cells
8

Similar Publications

CD4 T cell activation induces dramatic changes to cellular metabolism for supporting their growth and differentiation into effector subsets. While the cytokines IL-4, TGF-β and IL-21 promote differentiation into Th9 cells, metabolic factors regulating this process remain poorly understood. To assess the role of lipid metabolism in human Th9 cell differentiation, naïve CD4 T cells were purified from blood of healthy volunteers and cultured in the presence or absence of compounds targeting PPAR-γ, acetyl-CoA-carboxylase 1 (ACC1), and AMP-activated protein kinase (AMPK) for four days.

View Article and Find Full Text PDF

Human T9 cells rely on PPAR-γ-mediated cystine uptake to prevent lipid peroxidation and bioenergetic failure.

J Invest Dermatol

December 2024

Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. Electronic address:

T9 cells are implicated in allergic skin inflammation and depend on the transcription factor PPAR-γ for full effector function. In this study, we uncovered a role for PPAR-γ in the amino acid metabolism of human T9 cells. In in-vitro-primed T9 cells, PPAR-γ expression positively correlated with the expression of SLC7A8, which encodes LAT2, a transporter of large neutral amino acids, including cystine.

View Article and Find Full Text PDF

Th9 and Th17 Cells in Human Ulcerative Colitis-Associated Dysplastic Lesions.

Clin Med Insights Oncol

December 2024

Department of Gastroenterology & Nutrition, University Hospital of North Norway, University of Tromsø, Tromsø, Norway.

Background: Inflammation is the most important deriving force for the development of colitis-associated colorectal cancer (CAC) through the Inflammation-Pretumor dysplasia-CAC sequence. T helper (Th) subsets Th9 and Th17 cells can potentially stimulate inflammation in the ulcerative colitis (UC). Therefore, Th9 and Th17 cells may play a promoting role in the colitis-associated dysplasia (CAD).

View Article and Find Full Text PDF

CD97 maintains tumorigenicity of glioblastoma stem cells via mTORC2 signaling and is targeted by CAR Th9 cells.

Cell Rep Med

December 2024

The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China. Electronic address:

Glioblastoma (GBM) stem cells (GSCs) contribute to poor prognosis in patients with GBM. Identifying molecular markers is crucial for developing targeted therapies. Here, we identify cluster of differentiation 97 (CD97) as an optimal GSC surface antigen for potential targeting by chimeric antigen receptor (CAR) T cell therapy through in vitro antibody screening.

View Article and Find Full Text PDF
Article Synopsis
  • Lung metastasis is a major cause of cancer death, with few effective treatments; T helper 9 (T9) cells show potential in treating tough cases like lung metastases, but more research on their biology is needed.* ! -
  • The study involved transferring T1, T9, and T17 cells into different cancer models to compare their effectiveness, using techniques like flow cytometry and RNA sequencing to investigate the reasons behind T9 cells' superior ability to reach the lungs.* ! -
  • Results revealed that T9 cells have a stronger ability to target lung metastases due to the CXCR4-CXCL12 pathway, and disabling CXCR4 reduces T9 cells' presence in the lungs, highlighting their
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!