Mouse embryos employ a unique mechanism of cell volume regulation in which glycine is imported via the GLYT1 transporter to regulate intracellular osmotic pressure. Independent cell volume regulation normally becomes active in the oocyte after ovulation is triggered. This involves two steps: the first is the release of the strong adhesion between the oocyte and zona pellucida (ZP) while the second is the activation of GLYT1. In fully-grown oocytes, release of adhesion and GLYT1 activation also occur spontaneously in oocytes removed from the follicle. It is unknown, however, whether the capacity to release oocyte-ZP adhesion or activate GLYT1 first arises in the oocyte after ovulation is triggered or instead growing oocytes already possess these capabilities but they are suppressed in the follicle. Here, we assessed when during oogenesis oocyte-ZP adhesion can be released and when GLYT1 can be activated, with adhesion assessed by an osmotic assay and GLYT1 activity determined by [ H]-glycine uptake. Oocyte-ZP adhesion could not be released by growing oocytes until they were nearly fully grown. Similarly, the amount of GLYT1 activity that can be elicited in oocytes increased sharply at the end of oogenesis. The SLC6A9 protein that is responsible for GLYT1 activity and Slc6a9 transcripts are present in growing oocytes and increased over the course of oogenesis. Furthermore, SLC6A9 becomes localized to the oocyte plasma membrane as the oocyte grows. Thus, oocytes acquire the ability to regulate their cell volume by releasing adhesion to the ZP and activating GLYT1 as they approach the end of oogenesis. J. Cell. Physiol. 232: 2436-2446, 2017. © 2016 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.25581DOI Listing

Publication Analysis

Top Keywords

cell volume
16
volume regulation
12
oocyte-zp adhesion
12
growing oocytes
12
glyt1 activity
12
glyt1
9
oocytes acquire
8
independent cell
8
oocyte ovulation
8
ovulation triggered
8

Similar Publications

The therapeutic role of naringenin nanoparticles on hepatocellular carcinoma.

BMC Pharmacol Toxicol

January 2025

Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.

Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.

View Article and Find Full Text PDF

Spatially ordered recruitment of fast muscles in accordance with movement strengths in larval zebrafish.

Zoological Lett

January 2025

National Institutes of Natural Sciences, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.

In vertebrates, skeletal muscle comprises fast and slow fibers. Slow and fast muscle cells in fish are spatially segregated; slow muscle cells are located only in a superficial region, and comprise a small fraction of the total muscle cell mass. Slow muscles support low-speed, low-force movements, while fast muscles are responsible for high-speed, high-force movements.

View Article and Find Full Text PDF

Isolation and characterization of ɸEcM-vB1 bacteriophage targeting multidrug-resistant Escherichia coli.

BMC Res Notes

January 2025

Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.

Objectives: The aim of this study is to screen for, isolate and characterize a bacteriophage designated ɸEcM-vB1 with confirmed lytic activity against multidrug-resistant (MDR) E. coli. Methods done in this research are bacteriophage isolation, purification, titer determination, bacteriophage morphology, host range determination, bacteriophage latent period and burst size determination, genomic analysis by restriction enzymes, and bacteriophage total protein content determination.

View Article and Find Full Text PDF

Functionalization of polymer nanoparticles (NPs) with targeting peptides is of interest for drug delivery applications to enhance tumor accumulation and penetration. Herein, we evaluated the feasibility of two different methods for the attachment of a tumor-penetrating peptide LinTT1 (AKRGARSTA) to poly(ethylene glycol)-block-poly(ε-caprolactone) (PCL-PEG) NPs: (1) "post-conjugation" onto pre-formed nanoparticles, and (2) "pre-conjugation", the synthesis and purification of peptide-polymer conjugates and subsequent nanoprecipitation of the conjugates diluted with non-functionalized polymers. Conjugation of the labelled peptide via maleimide-thiol chemistry was verified by gel permeation chromatography (GPC) and fluorescence measurements.

View Article and Find Full Text PDF

Donafenib is an improved version of sorafenib in which deuterium is substituted into the drug's chemical structure, enhancing its stability and antitumor activity. Donafenib exhibits enhanced antitumor activity and better tolerance than sorafenib in preclinical and clinical studies. However, the specific mechanism of its effect on hepatocellular carcinoma has not been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!