Investigation of outdoor BTEX: Concentration, variations, sources, spatial distribution, and risk assessment.

Chemosphere

Research Center for Environmental Determinants of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.

Published: November 2016

The aim of this study was to measure BTEX (benzene, toluene, ethylbenzene, and xylenes) concentrations in the ambient air of Tehran, the capital of Iran, and investigate their seasonal variations, probable sources, spatial mapping, and risk assessment. The concentrations of BTEX were measured using a continuous monitoring device installed in seven stations around the city. Spatial mapping procedure was conducted using the inverse distance weighting (IDW) method. Monte Carlo simulation was used to assess the carcinogenic and noncarcinogenic risks imposed by BTEX. The highest and lowest annual mean concentrations of toluene and ethylbenzene were recorded as 16.25 and 3.63 μg m(-3), respectively. The maximum (6.434) and minimum (3.209) toluene/benzene (T/B) ratio was observed in summer and winter, respectively. The spatial distribution of BTEX pollution indicated that the highest concentrations were found along the major roads because of heavy traffic. Spearman's rank correlation coefficients and concentration ratios showed that BTEX were produced by the multiemission sources. The mean of inhalation lifetime cancer risk (LTCR) for benzene was 3.93 × 10(-7), which is lower than the limits recommended by the United States Environmental Protection Agency (US EPA) and the World Health Organization (WHO). The hazard quotient (HQ), noncarcinogenic risk index, for all BTEX compounds was <1. The obtained results showed no threat of BTEX concentrations to human health. However, as the concentrations of BTEX will increase due to the rapid growth of vehicles and industrial activities, much effort is required to control and manage the levels of these compounds in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2016.07.088DOI Listing

Publication Analysis

Top Keywords

sources spatial
8
spatial distribution
8
risk assessment
8
toluene ethylbenzene
8
spatial mapping
8
btex
7
investigation outdoor
4
outdoor btex
4
btex concentration
4
concentration variations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!