A high-energy electron beam was applied to irradiate graphite for the preparation of graphene oxide (GO) with a controllable oxygen content. The obtained GO sheets were analyzed with various characterization tools. The results revealed that the oxygen-containing groups of GO increased with increasing irradiation dosages. Hence, oxygen-content-controllable synthesis of GO can be realized by changing the irradiation dosages. The GO sheets with different irradiation dosages were then used to adsorb aqueous Pb(II). The effects of contact time, pH, initial lead ion concentration, and ionic strength on Pb(II) sorption onto different GO sheets were examined. The sorption process was found to be very fast (completed within 20 min) at pH 5.0. Except ionic strength, which showed no/little effect on lead sorption, the other factors affected the sorption of aqueous Pb(II) onto GO. The maximum Pb(II) sorption capacities of GO increased with irradiation dosages, confirming that electron-beam irradiation was an effective way to increase the oxygen content of GO. These results suggested that irradiated GO with a controllable oxygen content is a promising nanomaterial for environmental cleanup, particularly for the treatment of cationic metal ions, such as Pb(II).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b08059DOI Listing

Publication Analysis

Top Keywords

irradiation dosages
16
oxygen content
12
graphene oxide
8
controllable oxygen
8
aqueous pbii
8
ionic strength
8
pbii sorption
8
irradiation
5
pbii
5
sorption
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!