Baicalin is the main ingredient of traditional Chinese herbal medicine, Scutellaria baicalensis, which has been widely used clinically as an anti-inflammatory agent. However, molecular mechanism of action of this drug is not yet clear. In the present study, the protective mechanism of baicalin against lipopolysaccharide (LPS) induced inflammatory injury in cow mammary epithelial cells (CMECs) was explored. For this purpose, in vitro cultured CMECs were treated with baicalin (10μg/mL) and LPS (10μg/mL) for 24 and 12h, respectively, and the cell viability was measured by using cell counting kit-8 (CCK-8). The results revealed that LPS induced inflammatory responses, as p-p65/p65 and p-IκBα/IκBα ratios and TNF-α and IL-1β production was increased in the CMECs. Both Bcl-2/Bax ratio and cell viability were decreased and caspase-3 cleaved following LPS treatment, indicating apoptosis of CMECs. Moreover, both LPS and baicalin increased HSP72 expression of the CMECs. However, cellular inflammatory responses and apoptosis were significantly reduced in baicalin treated CMECs. In conclusion, baicalin ameliorated inflammation and apoptosis of the CMECs induced by LPS via inhibiting NF-κB activation and up regulation of HSP72.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2016.08.032DOI Listing

Publication Analysis

Top Keywords

inflammation apoptosis
8
cow mammary
8
mammary epithelial
8
epithelial cells
8
lps induced
8
induced inflammatory
8
cell viability
8
inflammatory responses
8
apoptosis cmecs
8
baicalin
7

Similar Publications

Dysregulation of long non-coding RNAs (lncRNAs) is implicated in the pathophysiology of ischemic stroke (IS). However, the molecular mechanism of the lncRNA SERPINB9P1 in IS remains unclear. Our study aimed to explore the role and molecular mechanism of the lncRNA SERPINB9P1 in IS.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe inflammatory condition of the respiratory system, associated with high morbidity and mortality. This study investigates the therapeutic potential of tocilizumab (TZ), an IL-6 receptor inhibitor, in mitigating lipopolysaccharide (LPS)-induced ALI by modulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. An ALI model was established using LPS induction.

View Article and Find Full Text PDF

Purpose: Sarcopenia is an age-related disease that is related to nutritional intake and chronic low-grade inflammation. The aim of this study was to investigate the association of dietary intake, inflammatory markers and sarcopenia among the community-dwelling older adults.

Methods: A total of 1001 older adults aged 60 and above were recruited.

View Article and Find Full Text PDF

The resistance of cancer cells to apoptosis poses a significant challenge in cancer therapy, driving the exploration of alternative cell death pathways such as pyroptosis, known for its rapid and potent effects. While initial efforts focused on chemotherapy-induced pyroptosis, concerns about systemic inflammation highlight the need for precise activation strategies. Photothermal therapy emerges as a promising non-invasive technique, minimizing pyroptosis-related side effects by targeting tumors spatially and temporally.

View Article and Find Full Text PDF

miRNAs Dysregulated in Human Papillomavirus-Associated Benign Prostatic Lesions and Prostate Cancer.

Cancers (Basel)

December 2024

Laboratorio de Biomedicina Molecular I, Programas de Doctorado en Ciencias en Biotecnología y Maestría en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, Mexico City 07320, Mexico.

Prostate pathologies, including chronic prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer (PCa), are strongly associated with chronic inflammation, which is a key risk factor and hallmark of these diseases [...

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!