The longitudinal and transverse electromagnetic response functions of ^{12}C are computed in a "first-principles" Green's function Monte Carlo calculation, based on realistic two- and three-nucleon interactions and associated one- and two-body currents. We find excellent agreement between theory and experiment and, in particular, no evidence for the quenching of the measured versus calculated longitudinal response. This is further corroborated by a reanalysis of the Coulomb sum rule, in which the contributions from the low-lying J^{π}=2^{+}, 0_{2}^{+} (Hoyle), and 4^{+} states in ^{12}C are accounted for explicitly in evaluating the total inelastic strength.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.117.082501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!