Graphene-titanium oxide (G-TiO2) nanocomposites were synthesized by a novel surfactant free, environmentally friendly one-port in-situ microwave method. The structure of the nanocomposite was characterized by the X-ray diffraction analysis and the morphology by using scanning electron microscopic and transmission electron microscopic images. The functional groups and carbon band structures were identified using FTIR and Raman spectral analysis. TiO2 nanoparticles in the size range of 5-10nm were distributed on the graphene sheets. The surface area of pure TiO2 and G-TiO2 nanocomposite was measured to be 20.11 and 173.76m(2)/g respectively. The pore volume and pore size of TiO2 were 0.018cm(3)/g and 1.5266nm respectively. G-TiO2 composite possesses higher pore volume (0.259cm(3)/g) and pore size 3.2075nm. The binding states of C, O and Ti of nanocomposite were analyzed by X-ray photoelectron spectroscopy, which confirmed the chemical bonding between graphene-TiO2. The photocatalytic activity of pure TiO2 and G-TiO2 nanocomposite was studied under UV and visible light irradiation sources with methylene blue dye. It has been observed that the degradation was faster in G-TiO2 nanocomposite than pure TiO2 nanoparticles. The rate constant and half life time were calculated from the kinetic studies of the degradation. The highest degradation efficiency of 97% was achieved in UV light and 96% for visible light irradiation with G-TiO2 as a catalyst. The studies reveal that G-TiO2 nanocomposite can be an effective catalyst for industrial waste water treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2016.08.029 | DOI Listing |
J Nanosci Nanotechnol
September 2018
Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
TiO2 nanoparticles (NPs) with their excellent photocatalytic performance are among the hottest research subjects for environmental-cleanup applications. In the present work, we developed a method of one-pot synthesis of magnesium aminoclay-titanium dioxide [MgAC-TiO2] nanocomposites in ethanol solution and then treated the obtained nanocomposites in a 350 °C muffle furnace for 3 hours. The obtained X-ray diffraction (XRD) patterns confirmed the growth of the anatase TiO2 NPs in the amorphous MgAC phase.
View Article and Find Full Text PDFMolecules
November 2016
PhotoGreen Laboratory, Dipartimento di Chimica, Universita di Pavia, Via Taramelli 12, Pavia 27100, Italy.
J Photochem Photobiol B
October 2016
Centre for Nanoscience and Technology, Anna University, Chennai 600 025, India. Electronic address:
Graphene-titanium oxide (G-TiO2) nanocomposites were synthesized by a novel surfactant free, environmentally friendly one-port in-situ microwave method. The structure of the nanocomposite was characterized by the X-ray diffraction analysis and the morphology by using scanning electron microscopic and transmission electron microscopic images. The functional groups and carbon band structures were identified using FTIR and Raman spectral analysis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2015
College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, P. R. China.
A novel approach for the fabrication of double-shelled, sandwiched, and nanostructured hollow spheres was proposed, using hydrotherm reaction and calcination. The negatively charged nanoparticles (e.g.
View Article and Find Full Text PDFAnal Chim Acta
December 2014
Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China. Electronic address:
Phospholipids possess important physiological, structural and nutritional functions in biological systems. This study described a solid-phase extraction (SPE) method, employing graphene and titanium dioxide (G/TiO2) nanocomposite as sorbent, for the selective isolation and enrichment of phospholipids from avocado (Persea americana Mill.).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!