A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Aligned Li Tunnels in Core-Shell Li(NiMnCo)O@LiFePO Enhances Its High Voltage Cycling Stability as Li-ion Battery Cathode. | LitMetric

Layered transition-metal oxides (Li[NiMnCo]O, NMC, or NMCxyz) due to their poor stability when cycled at a high operating voltage (>4.5 V) have limited their practical applications in industry. Earlier researches have identified Mn(II)-dissolution and some parasitic reactions between NMC surface and electrolyte, especially when NMC is charged to a high potential, as primarily factors responsible for the fading. In our previous work, we have achieved a capacity of NMC active material close to theoretical value and optimized its cycling performance by a depolarized carbon nanotubes (CNTs) network and an unique "pre-lithiation process" that generates an in situ organic coating (∼40 nm) to prevent Mn(II) dissolution and minimize the parasitic reactions. Unfortunately, this organic coating is not durable enough during a long-term cycling when the cathode operates at a high potential (>4.5 V). This work attempts to improve the surface protection of the NMC532 particles by applying an active inorganic coating consisting of nanosized- and crystal-orientated LiFePO (LFP) (about 50 nm, exposed (010) face) to generate a core-shell nanostructure of Li(NiMnCo)O@LiFePO. Transmission electron microscopy (TEM) and etching X-ray photoelectron spectroscopy have confirmed an intimate contact coating (about 50 nm) between the original structure of NMC and LFP single-particle with atomic interdiffusion at the core-shell interface, and an array of interconnected aligned Li tunnels are observed at the interface by cross-sectional high-resolution TEM, which were formed by ball-milling and then strictly controlling the temperature below 100 °C. Batteries based on this modified NMC cathode material show a high reversible capacity when cycled between 3.0 and 4.6 V during a long-term cycling.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.6b02742DOI Listing

Publication Analysis

Top Keywords

aligned tunnels
8
parasitic reactions
8
high potential
8
organic coating
8
long-term cycling
8
nmc
6
high
5
tunnels core-shell
4
core-shell linimncoo@lifepo
4
linimncoo@lifepo enhances
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!