Lanthanide chemistry has only been extensively studied for the last 2 decades, when it was recognized that these elements have unusual chemical characteristics including fluorescent and potent magnetic properties because of their unique 4f electrons.1,2 Chemists are rapidly and efficiently integrating lanthanides into numerous compounds and materials for sophisticated applications. In fact, lanthanides are often referred to as "the seeds of technology" because they are essential for many technological devices including smartphones, computers, solar cells, batteries, wind turbines, lasers, and optical glasses.3-6 However, the effect of lanthanides on biological systems has been understudied. Although displacement of Ca by lanthanides in tissues and enzymes has long been observed,7 only a few recent studies suggest a biological role for lanthanides based on their stimulatory properties toward some plants and bacteria.8,9 Also, it was not until 2011 that the first biochemical evidence for lanthanides as inherent metals in bacterial enzymes was published.10 This forum provides an overview of the classical and current aspects of lanthanide coordination chemistry employed in the development of technology along with the biological role of lanthanides in alcohol oxidation. The construction of lanthanide-organic frameworks will be described. Examples of how the luminescence field is rapidly evolving as more information about lanthanide-metal emissions is obtained will be highlighted, including biological imaging and telecommunications.11 Recent breakthroughs and observations from different exciting areas linked to the coordination chemistry of lanthanides that will be mentioned in this forum include the synthesis of (i) macrocyclic ligands, (ii) antenna molecules, (iii) coordination polymers, particularly nanoparticles, (iv) hybrid materials, and (v) lanthanide fuel cells. Further, the role of lanthanides in bacterial metabolism will be discussed, highlighting the discovery that lanthanides are cofactors in biology, particularly in the enzymatic oxidation of alcohols. Finally, new and developing chemical and biological lanthanide mining and recycling extraction processes will be introduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.6b00919 | DOI Listing |
Chem Commun (Camb)
January 2025
Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
DO and HO, as two important solvents with very similar properties, play a pivotal role in nuclear industrial production, life and scientific research. Unfortunately, DO and HO are highly susceptible to contamination by each other, so effective qualitative and quantitative analyses of both are necessary. This review comprehensively discusses the progress in optical sensing for the detection of a trace amount of HO in heavy water or , mainly including five types of analytical systems: inorganic nanocrystals, carbon-based nanomaterials, lanthanide complexes, organic polymers, and organic small molecules.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, China.
Environmental concerns are driving the development of eco-friendly and effective methods for contaminant monitoring and remediation. In this study, a lanthanide porphyrin-based MOF with dual fluorescence sensing and photocatalytic properties was synthesized and applied for the detection and combined removal of Cr(VI) and ciprofloxacin (CIP). Using different excitation wavelengths, the material exhibited selective detection of Cr(VI) via fluorescence quenching and CIP through fluorescence enhancement.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China. Electronic address:
The large-scale mining and utilization of rare earth elements have significantly increased their concentration in the environment, especially in regions surrounding mining areas. These environmentally-enriched rare earth elements accumulate in agricultural products and organisms through soil and water, potentially impacting in human health through the food chain. Erbium (Er), a rare earth element of the lanthanide series (Group IIIB), plays a crucial role in various modern technological applications.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N6N5, Canada.
Lanthanide-based Single-Molecule Magnets (SMMs) with optical and magnetic properties provide a means to understand intrinsic energy levels of 4f ions and their influence on optical and magnetic behaviour. Fundamental understanding of their luminescent and slow relaxation of the magnetization behaviour is critical for targeting and designing SMMs with multiple functionalities. Herein, we seek to investigate the role of Dy coordination environment and fine electronic structure on the slow magnetic relaxation and luminescence thermometry.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
Background: Fibroblast activation protein (FAP)-targeted radioligand therapy, with immunomodulatory effects, has shown efficacy in both preclinical and clinical studies. We recently reported on a novel dimeric FAP-targeting radiopharmaceutical, Ga/Lu-DOTA-2P(FAPI), which demonstrated increased tumor uptake and prolonged retention in various cancers. However, further exploration is required to understand the therapeutic efficacy and underlying mechanisms of combining Ga/Lu-DOTA-2P(FAPI) radioligand therapy with PD-1/PD-L1 immunotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!