An alternative data filling approach for prediction of missing data in soft sets (ADFIS).

Springerplus

Department of Information Systems, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia.

Published: September 2016

Soft set theory is a mathematical approach that provides solution for dealing with uncertain data. As a standard soft set, it can be represented as a Boolean-valued information system, and hence it has been used in hundreds of useful applications. Meanwhile, these applications become worthless if the Boolean information system contains missing data due to error, security or mishandling. Few researches exist that focused on handling partially incomplete soft set and none of them has high accuracy rate in prediction performance of handling missing data. It is shown that the data filling approach for incomplete soft set (DFIS) has the best performance among all previous approaches. However, in reviewing DFIS, accuracy is still its main problem. In this paper, we propose an alternative data filling approach for prediction of missing data in soft sets, namely ADFIS. The novelty of ADFIS is that, unlike the previous approach that used probability, we focus more on reliability of association among parameters in soft set. Experimental results on small, 04 UCI benchmark data and causality workbench lung cancer (LUCAP2) data shows that ADFIS performs better accuracy as compared to DFIS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4987750PMC
http://dx.doi.org/10.1186/s40064-016-2797-xDOI Listing

Publication Analysis

Top Keywords

soft set
20
missing data
16
data filling
12
filling approach
12
data
9
alternative data
8
approach prediction
8
prediction missing
8
data soft
8
soft sets
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!