Motivation: Combining P-values from multiple statistical tests is a common exercise in bioinformatics. However, this procedure is non-trivial for dependent P-values. Here, we discuss an empirical adaptation of Brown's method (an extension of Fisher's method) for combining dependent P-values which is appropriate for the large and correlated datasets found in high-throughput biology.
Results: We show that the Empirical Brown's method (EBM) outperforms Fisher's method as well as alternative approaches for combining dependent P-values using both noisy simulated data and gene expression data from The Cancer Genome Atlas.
Availability And Implementation: The Empirical Brown's method is available in Python, R, and MATLAB and can be obtained from https://github.com/IlyaLab/CombiningDependentPvalues UsingEBM The R code is also available as a Bioconductor package from https://www.bioconductor.org/packages/devel/bioc/html/EmpiricalBrownsMethod.html
Contact: Theo.Knijnenburg@systemsbiology.org
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013915 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btw438 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!