Rolling contact wear/fatigue tests on wheel/rail specimens are important to produce wheels and rails of new materials for improved lifetime and performance, which are able to operate in harsh environments and at high rolling speeds. This paper presents a novel non-invasive, all-optical system, based on a high-speed video camera and multiple laser illumination sources, which is able to continuously monitor the dynamics of the specimens used to test wheel and rail materials, in a laboratory test bench. 3D macro-topography and angular position of the specimen are simultaneously performed, together with the acquisition of surface micro-topography, at speeds up to 500 rpm, making use of a fast camera and image processing algorithms. Synthetic indexes for surface micro-topography classification are defined, the 3D macro-topography is measured with a standard uncertainty down to 0.019 mm, and the angular position is measured on a purposely developed analog encoder with a standard uncertainty of 2.9°. The very small camera exposure time enables to obtain blur-free images with excellent definition. The system will be described with the aid of end-cycle specimens, as well as of in-test specimens.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4959981DOI Listing

Publication Analysis

Top Keywords

rolling contact
8
contact wear/fatigue
8
based high-speed
8
laser illumination
8
angular position
8
surface micro-topography
8
standard uncertainty
8
novel optical
4
optical apparatus
4
apparatus study
4

Similar Publications

Two-point contact is one of the fundamental problems of wheel-rail contact in switch area. The contact state and the distribution of forces are complex and essential points in wheel-rail relationship. Given the problem that the current dynamic wheel-rail contact state is challenging to detect, a theory to detect the two-point contact state of the wheel-rail in switch area using a discrete gauge column was presented and proved in the finite element model.

View Article and Find Full Text PDF

This article reports facile fabrication of a multifunctional smart surface having superhydrophobic self-cleaning property, superoleophilicity, and antimicrobial property. These smart surfaces have been synthesized using the stereolithography (SLA) method of the additive manufacturing technique. SLA is a fast additive manufacturing technique used to create complex parts with intricate geometries.

View Article and Find Full Text PDF

The results of an investigation of an impact of the structure of recently synthesized bis(trifluoromethylsulfonyl)imide mono- and dicationic ionic liquids on their properties and behavior as lubricants for slippery liquid infused superhydrophobic coatings are presented for a wide temperature range. In this study, a new approach based on monitoring the surface tension of a liquid sessile droplet on top of a coating was exploited for the analysis of the evolution of the coating properties in prolonged contact with the liquid. It was found that the continuous contact with water flow results in slippery property degradation according to two different scenarios.

View Article and Find Full Text PDF

Superhydrophobic surfaces have been demonstrated to exhibit excellent anti-icing effects, but they are susceptible to the loss of ice repellency as a result of external impacts. This paper proposes a novel bionic armour structure that combines an armour structure with an arrowroot bionic structure. A composite method combining laser etching and chemical modification was employed to achieve superhydrophobicity on the surface of the aluminium alloy.

View Article and Find Full Text PDF

Fast fabrication of stimuli-responsive MXene-based hydrogels for high-performance actuators with simultaneous actuation and self-sensing capability.

J Colloid Interface Sci

April 2025

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China. Electronic address:

Poly(N-isopropylacrylamide) (PNIPAM) composite hydrogels have recently emerged as promising candidates for soft hydrogel actuators. However, developing a facile and fast method to obtain multifunctional PNIPAM hydrogel actuators with simulating biological versatility remains a major challenge. Herein, we developed a fast-redox initiation system to prepare PNIPAM/sodium carboxymethyl cellulose (CMC)/TCT MXene nanocomposite hydrogel with multidirectional actuating behaviors and improved mechanical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!