The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4959187DOI Listing

Publication Analysis

Top Keywords

response mcp
12
energy range
12
mcp
9
mcp detector
8
mcp response
8
response
7
detector
5
energy
5
experimental evaluation
4
evaluation response
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!