The effects of ozonation, anion exchange resin (AER) and UV/HO were investigated as a pre-treatment to control organic fouling (OF) of ultrafiltration membrane in the treatment of drinking water. It was found that high molecular weight (MW) organics such as protein and polysaccharide substances were majorly responsible for reversible fouling which contributed to 90% of total fouling. The decline rate increased with successive filtration cycles due to deposition of protein content over time. All pre-treatment could reduce the foulants of a Ultrafiltration membrane which contributed to the improvement in flux, and there was a greater improvement of flux by UV/HO (61%) than ozonation (43%) which in turn was greater than AER (23%) treatment. This was likely due to the effective removal/breakdown of high MW organic content. AER gave greater removal of biofouling potential components (such as biodegradable dissolved organic carbon and assimilable organic carbon contents) compared to UV/HO and ozonation treatment. Overall, this study demonstrated the potential of pre-treatments for reducing OF of ultrafiltration for the treatment of drinking water.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2016.1228701DOI Listing

Publication Analysis

Top Keywords

ultrafiltration membrane
12
drinking water
12
ozonation anion
8
anion exchange
8
exchange resin
8
fouling ultrafiltration
8
treatment drinking
8
improvement flux
8
organic carbon
8
treatment
5

Similar Publications

The influence of the molecular weight and chemical structure of polyphenylene sulfone (PPSU) end groups on the formation of the porous structure of ultrafiltration (UF) hollow fiber membranes was investigated. Polymers with a molecular weight ranging from 67 to 81 kg/mol and with a hydroxyl-to-chlorine end group ratio ranging from 0.43 to 17.

View Article and Find Full Text PDF

Inorganic arsenic (As) is one of the most significant chemical contaminants in drinking water worldwide. Although membrane-based technologies are commonly used for As removal, they often encounter challenges including complex operation, high energy consumption, and the need for chemical addition. To address these challenges, we proposed a one-step ultrafiltration (UF) process empowered by in situ biogenic manganese oxides (BioMnO) cake layers without any additional chemicals, to treat source water contaminated with both As and manganese (Mn).

View Article and Find Full Text PDF

The efficiency of ultrafiltration (UF) of acidified skim milk (SM) is impaired by protein aggregation and mineral scaling. The aim of this study is to assess the potential of acidification by electrodialysis with bipolar membranes (EDBM), in comparison with citric acid (CA), prior to the UF process on filtration performance, fouling and composition of the protein concentrates. Electro-acidification, facilitated by a water-splitting reaction, decreased the pH of milk to ∼ 5.

View Article and Find Full Text PDF

The efficient separation of bioactive components from Eucommia ulmoides Oliver using membrane filtration technology and its mechanisms in preventing alcoholic liver disease.

Carbohydr Polym

March 2025

College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; College of Forestry, Northwest A&F University, Yangling 712100, China; Western Scientific Observation and Experiment Station for Development and Utilization of Rural Renewable Energy, M.O.A, Northwest Agriculture & Forestry University, Yangling 712100, China. Electronic address:

The efficient extraction and purification of active components from Eucommia ulmoides Oliver (EUO) are crucial for their utilization. The structure and properties of the prepared EUO leaf polysaccharides (ELPs) and extractum (ELE) were comprehensively characterized in this study, and the intervention mechanism of the EUO polysaccharides and extractum in alcoholic liver disease (ALD) were investigated. The yield of EUO extractum was 24.

View Article and Find Full Text PDF

Water pollution is a major global issue, and antibiotic drugs released into aquatic environments by the pharmaceutical industry, such as ciprofloxacin, have negative consequences on both human health and the ecosystem. In this study, the performance of PVA as a polymer ligand for ciprofloxacin (CPFX) removal is evaluated through polymer-enhanced ultrafiltration using a novel composite PVC-ZnO membrane. The initial concentration of the ciprofloxacin solution, pH, ionic strength, ideal polymer concentration, duration, and maximum retention capacity were among the factors that were examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!