A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Communication: Evaporation: Influence of heat transport in the liquid on the interface temperature and the particle flux. | LitMetric

Molecular dynamics simulations are reported for the evaporation of a liquid into vacuum, where a Lennard-Jones type fluid with truncated and shifted potential at 2.5σ is considered. Vacuum is enforced locally by particle deletion and the liquid is thermostated in its bulk so that heat flows to the planar interface driving stationary evaporation. The length of the non-thermostated transition region between the bulk liquid and the interface Ln is under study. First, it is found for the reduced bulk liquid temperature Tl/Tc = 0.74 (Tc is the critical temperature) that by increasing Ln from 5.2σ to 208σ the interface temperature Ti drops by 17% and the evaporation flux decreases by a factor of 4.4. From a series of simulations for increasing values of Ln, an asymptotic value Ti (∞) of the interface temperature for Ln → ∞ can be estimated which is 21% lower than the bulk liquid temperature Tl. Second, it is found that the evaporation flux is solely determined by the interface temperature Ti, independent on Tl or Ln. Combining these two findings, the evaporation coefficient α of a liquid thermostated on a macroscopic scale is estimated to be α ≈ 0.14 for Tl/Tc = 0.74.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4961542DOI Listing

Publication Analysis

Top Keywords

interface temperature
16
bulk liquid
12
liquid interface
8
liquid thermostated
8
liquid temperature
8
tl/tc 074
8
evaporation flux
8
liquid
7
temperature
7
interface
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!