A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Silver nanoparticles induce irremediable endoplasmic reticulum stress leading to unfolded protein response dependent apoptosis in breast cancer cells. | LitMetric

Silver nanoparticles induce irremediable endoplasmic reticulum stress leading to unfolded protein response dependent apoptosis in breast cancer cells.

Apoptosis

Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, Institut National de la Recherche Scientifique, Institut Armand-Frappier, 531 Boulevard des Prairies, Room K-138, Laval, Québec, H7V 1B7, Canada.

Published: November 2016

Nowadays, silver nanoparticles (AgNP) are widely used in the medical field mainly for their antibacterial properties. Although some studies report a cytotoxic activity of the particles, the mechanisms involved in AgNP-induced cell death remain to be determined. Herein, we report that AgNP of 2 (AgNP) and 15 nm (AgNP) induce apoptosis in human MCF-7 and T-47D breast cancer cells. Treatment with AgNP and AgNP led to accumulation and aggregation of misfolded proteins causing an endoplasmic reticulum (ER) stress and activating the unfolded protein response (UPR). The three main ER sensors, PERK, IRE-1α and ATF-6, were rapidly activated in response to AgNP and AgNP. Although Grp78 levels remained unchanged, AgNP and AgNP induced upregulation of the transcription factors ATF-4 and GADD153/CHOP. Moreover, the initiating caspase-9 and the effector caspase-7 were activated in response to these NPs. The expression levels of the pro-apoptotic BIM and BAD proteins remained unchanged. In contrast, a downregulation of Mcl-1 and xIAP protein expression as well as a processing of PARP were observed. Pharmacological inhibition of PERK kinase and IRE-1 endonuclease activities, as well as inhibition of ER-stress, partially protected cells from AgNP- and AgNP-induced apoptosis. Of note, the non-cancerous MCF-10A cells were more resistant to both AgNP and AgNP when compared to MCF-7 and T-47D cell lines. Taken together, our results demonstrate that AgNP induce ER stress and can target the UPR-dependent apoptotic pathway in MCF-7 and T-47D, which highlights new potential strategies for the treatment of breast cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10495-016-1285-7DOI Listing

Publication Analysis

Top Keywords

agnp agnp
20
agnp
13
mcf-7 t-47d
12
silver nanoparticles
8
endoplasmic reticulum
8
reticulum stress
8
unfolded protein
8
protein response
8
breast cancer
8
cancer cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!