Clustering analysis of proteins from microbial genomes at multiple levels of resolution.

BMC Bioinformatics

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, 20894, MD, USA.

Published: August 2016

AI Article Synopsis

  • The National Center for Biotechnology Information (NCBI) hosts over 35,000 microbial genome assemblies, facing challenges like uneven sampling density, variable protein annotation frequency, and diverse genome quality.
  • The proposed approach employs protein clustering at three different levels: creating tight clusters for closely-related genomes, organizing conservative clusters into seed global clusters, and building global protein clusters around these seeds to ensure meaningful analysis.
  • This method enhances protein representation and compression, but handling unique or rapidly evolving proteins still demands significant computational resources due to their poor grouping.

Article Abstract

Background: Microbial genomes at the National Center for Biotechnology Information (NCBI) represent a large collection of more than 35,000 assemblies. There are several complexities associated with the data: a great variation in sampling density since human pathogens are densely sampled while other bacteria are less represented; different protein families occur in annotations with different frequencies; and the quality of genome annotation varies greatly. In order to extract useful information from these sophisticated data, the analysis needs to be performed at multiple levels of phylogenomic resolution and protein similarity, with an adequate sampling strategy.

Results: Protein clustering is used to construct meaningful and stable groups of similar proteins to be used for analysis and functional annotation. Our approach is to create protein clusters at three levels. First, tight clusters in groups of closely-related genomes (species-level clades) are constructed using a combined approach that takes into account both sequence similarity and genome context. Second, clustroids of conservative in-clade clusters are organized into seed global clusters. Finally, global protein clusters are built around the the seed clusters. We propose filtering strategies that allow limiting the protein set included in global clustering. The in-clade clustering procedure, subsequent selection of clustroids and organization into seed global clusters provides a robust representation and high rate of compression. Seed protein clusters are further extended by adding related proteins. Extended seed clusters include a significant part of the data and represent all major known cell machinery. The remaining part, coming from either non-conservative (unique) or rapidly evolving proteins, from rare genomes, or resulting from low-quality annotation, does not group together well. Processing these proteins requires significant computational resources and results in a large number of questionable clusters.

Conclusion: The developed filtering strategies allow to identify and exclude such peripheral proteins limiting the protein dataset in global clustering. Overall, the proposed methodology allows the relevant data at different levels of details to be obtained and data redundancy eliminated while keeping biologically interesting variations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009818PMC
http://dx.doi.org/10.1186/s12859-016-1112-8DOI Listing

Publication Analysis

Top Keywords

protein clusters
12
clusters
9
microbial genomes
8
multiple levels
8
protein
8
seed global
8
global clusters
8
seed clusters
8
filtering strategies
8
strategies allow
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!