Mild Synthesis of Sterically Congested Alkyl Aryl Ethers.

Org Lett

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.

Published: September 2016

An efficient and transition-metal-free method is presented to access tertiary alkyl aryl ethers by arylation of tertiary alcohols with ortho-substituted diaryliodonium salts. The scope covers cyclic and acyclic aliphatic, benzylic, allylic, and propargylic tertiary alcohols as well as primary and secondary fluorinated alcohols. The methodology gives access to alkyl aryl ethers of previously unprecedented steric congestion. Furthermore, the versatility of the developed procedure was demonstrated by arylation of the pro-drug mestranol.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.6b01975DOI Listing

Publication Analysis

Top Keywords

alkyl aryl
12
aryl ethers
12
tertiary alcohols
8
mild synthesis
4
synthesis sterically
4
sterically congested
4
congested alkyl
4
ethers efficient
4
efficient transition-metal-free
4
transition-metal-free method
4

Similar Publications

Taming highly enolizable aldehydes for catalytic asymmetric C-C coupling with nucleophiles remains an elusive challenge compared to widely explored simple alkyl or aryl aldehydes. Herein, we use ThDP-dependent enzymes to realize the direct C-C coupling of highly enolizable 2-phosphonate aldehydes with in situ-generated dynamically reversible nucleophiles (acyl anions). Unlike NHC-mediated reactions that yield complex mixtures of multiple adducts, our enzymatic process selectively produces biologically active β-hydroxy phosphonates with high yields (up to 95%) and excellent enantioselectivities (up to 99% ee).

View Article and Find Full Text PDF

Secondary Alkylation of Arenes via the Borono-Catellani Strategy.

J Am Chem Soc

January 2025

Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China.

A modular platform technology for the synthesis of α-aryl carbonyl derivatives via Borono-Catellani-type secondary alkylation of arenes is presented. This practical method features a broad substrate scope regarding aryl boronic acid catechol esters, secondary alkyl bromides, and diversified terminating reagents (e.g.

View Article and Find Full Text PDF

Facile Access to Quaternary Carbon Centers via Ni-Catalyzed Arylation of Alkenes with Organoborons.

J Am Chem Soc

January 2025

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.

Quaternary carbon centers are widespread structural motifs, thus representing extensive interest in organic synthesis. We describe here an efficient nickel-catalyzed intermolecular, -selective arylation of minimally functionalized alkenes with stable organoborons, affording a broad range of cyclic or acyclic quaternary carbon centers under mild conditions. The utilization of the diimine ligand is critical for high reactivity and chemoselectivity.

View Article and Find Full Text PDF

The simple and efficient conversion of carboxylic acids into structurally diverse organic molecules is highly desirable in chemical synthesis. This review covers recent developments in photocatalytic methodology for late-stage transformations of complex carboxylic acids and their derivatives enabled by radical decarboxylation and deoxygenation, highlighting some representative and significant contributions in this field. These advancements are categorized based on the reactivity patterns exhibited by the carboxylic acids.

View Article and Find Full Text PDF

A facile two-step enantiospecific synthesis of 5,6,7,8-tetrahydroindolizine scaffolds has been developed via TMSOTf-promoted [3 + 2] cycloaddition between carbohydrate-derived spirocyclic donor-acceptor cyclopropanecarboxlates and alkyl/aryl nitriles followed by an intramolecular Mitsunobu reaction of the resulting chiral 2/5-(4-hydroxybutyl)pyrrole derivatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!