In contrast to protein O-phosphorylation, studying the function of the less frequent N- and S-phosphorylation events have lagged behind because they have chemical features that prevent their manipulation through standard synthetic and analytical methods. Here we report on the development of a chemoselective synthetic method to phosphorylate Cys side-chains in unprotected peptides. This approach makes use of a reaction between nucleophilic phosphites and electrophilic disulfides accessible by standard methods. We achieve the stereochemically defined phosphorylation of a Cys residue and verify the modification using electron-transfer higher-energy dissociation (EThcD) mass spectrometry. To demonstrate the use of the approach in resolving biological questions, we identify an endogenous Cys phosphorylation site in IICB(Glc), which is known to be involved in the carbohydrate uptake from the bacterial phosphotransferase system (PTS). This new chemical and analytical approach finally allows further investigating the functions and significance of Cys phosphorylation in a wide range of crucial cellular processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025809 | PMC |
http://dx.doi.org/10.1038/ncomms12703 | DOI Listing |
Sci Rep
January 2025
Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, Shaanxi, China.
Peroxiredoxin 6 (PRDX6) is one of the Peroxiredoxin family members with only 1-Cys, using glutathione as the electron donor to reduce peroxides in cells. PRDX6 has been frequently studied and its expression was associated with poor prognosis in many tumors. However, the expression of PRDX6 in multiple myeloma (MM) and its relevance with MM remain unclear.
View Article and Find Full Text PDFNat Commun
January 2025
National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, Japan.
The presence of redox-active molecules containing catenated sulfur atoms (supersulfides) in living organisms has led to a review of the concepts of redox biology and its translational strategy. Glutathione (GSH) is the body's primary detoxifier and antioxidant, and its oxidized form (GSSG) has been considered as a marker of oxidative status. However, we report that GSSG, but not reduced GSH, prevents ischemic supersulfide catabolism-associated heart failure in male mice by electrophilic modification of dynamin-related protein (Drp1).
View Article and Find Full Text PDFFree Radic Biol Med
December 2024
Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4, Kagamiyama, Higashihiroshima, Hiroshima, 7398528, Japan. Electronic address:
Sperm cells are highly susceptible to oxidative stress, which decreases their motility and fertility. However, glutathione (GSH) plays a critical role in protecting sperm cells from oxidative damage, a common byproduct of mitochondrial oxidative phosphorylation. On the other hand, GSH biosynthesis in sperm is limited by the availability of cysteine (Cys), which is inherently unstable and found at low concentrations in boar seminal plasma.
View Article and Find Full Text PDFAnalyst
January 2025
Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
The analysis of protein phosphorylation and glycosylation is critical for investigating disease development. In this work, 1,2-epoxy-5-hexene and ,-methylenebisacrylamide were polymerized with vinyl phosphate to produce a polymer (denoted as PVME), which contained a variety of hydrophilic groups. The material's hydrophilicity was further enhanced by a ring-opening reaction with cysteine (the product was denoted as Cys-PVEM).
View Article and Find Full Text PDFArch Biochem Biophys
February 2025
Laboratory of Biochemistry, National Heart, Lung and Blood Institute, Maryland, USA. Electronic address:
Ca/calmodulin-dependent protein kinase II α (CaMKIIα) "autonomous" activation induced by Thr286 phosphorylation has a crucial role in synaptic plasticity. Previous studies showed that in Alzheimer's disease brain, CaMKIIα autophosphorylation at Thr286 is reduced while the level of cysteine-oxidized CAMKIIα is elevated. We performed tryptic mapping of the oxidized CaMKIIα and discovered the formation of a disulfide between the N-terminal Cys6 and the regulatory domain Cys280.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!