The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009357 | PMC |
http://dx.doi.org/10.1038/srep32666 | DOI Listing |
Mol Breed
February 2025
National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.
Plant diseases caused by pathogens and pests lead to crop losses, posing a threat to global food security. The secretory pathway is an integral component of plant defense. The exocyst complex regulates the final step of the secretory pathway and is thus essential for secretory defense.
View Article and Find Full Text PDFPlant Mol Biol
January 2025
Department of Plant Pathology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra (GKVK), Bengaluru, India.
In a wake of shifting climatic scenarios, plants are frequently forced to undergo a spectrum of abiotic and biotic stresses at various stages of growth, many of which have a detrimental effect on production and survival. Naturally, microbial consortia partner up to boost plant growth and constitute a diversified ecosystem against abiotic stresses. Despite this, little is known pertaining to the interplay between endophytic microbes which release phytohormones and stimulate plant development in stressed environments.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China.
Background: The invasion of Spodoptera frugiperda into China has caused serious losses to the food industry and has developed varying degrees of resistance to various chemical pesticides. Developing new plant-based pesticides is of great significance for the sustainable management of S. frugiperda.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, Egypt.
Sheath blight, caused by AG1 IA, is a challenging disease of rice worldwide. In the current study, nine isolates, within the anastomosis group AG-1 IA, were isolated, characterized based on their macroscopic and microscopic features, as well as their ability to produce cell wall degrading enzymes (CWDEs), and further molecularly identified via ITS sequencing. Although all isolates were pathogenic and produced typical sheath blight symptoms the susceptible rice cultivar, Sakha 101, AG1 IA -isolate SHBP9 was the most aggressive isolate.
View Article and Find Full Text PDFCommun Integr Biol
December 2024
Central Department of Botany, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
We isolated endophytic strains from the healthy roots, stems, and leaves of to investigate their plant growth-promoting activities in vitro. Subsequently, Indole acetic acid (IAA) was quantified and the gene (responsible for IAA synthesis in fungi) was amplified and sequenced. Finally, a germination assay was performed with seeds of and a plant growth assay with protocorms of to test their plant growth-promoting activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!