Combining resistive switching and magnetoresistance in a system exhibits great potential for application in multibit nonvolatile data storage. It is in significance and difficulty to seek a material with resistances that can be stably switched at different resistance states modulated by an electrical field and a magnetic field. In this paper, we propose a novel electrode/ZnO/ZnO-Co/electrode device in which the storage layer combines a nanostructured ZnO-Co layer and a ZnO layer. The device exhibits bipolar resistive switching characteristics, which can be explained by the accumulation of oxygen vacancies due to the migration of oxygen ions by external electrical stimuli and the contribution of Co particles in the ZnO-Co layer. Moreover, the magnetoresistance effect at room temperature can be observed in the device at high and low resistance states. Therefore, through electrical and magnetic control, four resistance states are achieved in this system, presenting a new possibility towards enhancing data densities by many folds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009953 | PMC |
http://dx.doi.org/10.1038/srep31934 | DOI Listing |
Int J Surg
January 2025
Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases. Although several chemotherapy regimens have been developed over the past decades, few targeted therapies have shown a significant improvement in overall survival, partly due to the identification of PDAC as a single disease.
Methods: Combining metabolomic analysis and immunohistochemistry staining with Oil Red O staining, analysis for the oxygen consumption rate and extracellular acidification rate, we stratified pancreatic cancer cells into two subtypes.
Molecular junctions (MJs) are celebrated nanoelectronic devices for mimicking conventional electronic functions, including rectifiers, sensors, wires, switches, transistors, negative differential resistance, and memory, following an understanding of charge transport mechanisms. However, capacitive nanoscale molecular junctions are rarely seen. The present work describes electrochemically (E-Chem) grown covalently attached molecular thin films of 10, 14.
View Article and Find Full Text PDFRecent Pat Nanotechnol
January 2025
Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands.
The increase in computational power demand led by the development of Artificial Intelligence is rapidly becoming unsustainable. New paradigms of computation, which potentially differ from digital computation, together with novel hardware architecture and devices, are anticipated to reduce the exorbitant energy demand for data-processing tasks. Memristive systems with resistive switching behavior are under intense research, given their prominent role in the fabrication of memory devices that promise the desired hardware revolution in our intensive data-driven era.
View Article and Find Full Text PDFEur J Clin Microbiol Infect Dis
January 2025
Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium.
Purpose: Mortality and morbidity of patients with bloodstream infection (BSI) remain high despite advances in diagnostic methods and efforts to speed up reporting. This study investigated the impact of reporting rapid Minimum Inhibitory Concentration (MIC)-results in Gram negative BSIs with the ASTar system (Q-linea, Uppsala, Sweden) on the adaptation of empirically started antimicrobial therapy. We performed a real-world study during which antimicrobial susceptibility testing (AST) results were instantly reported to the treating physician in an established multidisciplinary antimicrobial stewardship setting.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Lenin Ave. 30, 634050 Tomsk, Russia.
Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes show severely limited performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!