Clinical phenotyping is currently used to guide pharmacological treatment decisions in chronic obstructive pulmonary disease (COPD), a personalized approach to care. Precision medicine integrates biological (endotype) and clinical (phenotype) information for a more individualized approach to pharmacotherapy, to maximize the benefit versus risk ratio. Biomarkers can be used to identify endotypes. To evolve toward precision medicine in COPD, the most appropriate biomarkers and clinical characteristics that reliably predict treatment responses need to be identified. FEV1 is a marker of COPD severity and has historically been used to guide pharmacotherapy choices. However, we now understand that the trajectory of FEV1 change, as an indicator of disease activity, is more important than a single FEV1 measurement. There is a need to develop biomarkers of disease activity to enable a more targeted and individualized approach to pharmacotherapy. Recent clinical trials testing commonly used COPD treatments have provided new information that is likely to influence pharmacological treatment decisions both at initial presentation and at follow up. In this Perspective, we consider the impact of recent clinical trials on current COPD treatment recommendations. We also focus on the movement toward precision medicine and propose how this field needs to evolve in terms of using clinical characteristics and biomarkers to identify the most appropriate patients for a given pharmacological treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1164/rccm.201606-1179PPDOI Listing

Publication Analysis

Top Keywords

pharmacological treatment
16
precision medicine
12
chronic obstructive
8
obstructive pulmonary
8
pulmonary disease
8
treatment decisions
8
individualized approach
8
approach pharmacotherapy
8
biomarkers identify
8
clinical characteristics
8

Similar Publications

Leaky and structurally abnormal blood vessels and increased pressure in the tumor interstitium reduce the infiltration of CAR-T cells in solid tumors, including triple-negative breast cancer (TNBC). Furthermore, high burden of tumor cells may cause reduction of infiltrating CAR-T cells and their functional exhaustion. In this study, various effector-to-target (E:T) ratio experiments are established to model the treatment using CAR-T cells in leukemia (high E:T ratio) and solid tumor (low E:T ratio).

View Article and Find Full Text PDF

Targeting MAPK14 by Lobeline Upregulates Slurp1-Mediated Inhibition of Alternative Activation of TAM and Retards Colorectal Cancer Growth.

Adv Sci (Weinh)

January 2025

Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.

Colorectal cancer (CRC) usually creates an immunosuppressive microenvironment, thereby hindering immunotherapy response. Effective treatment options remain elusive. Using scRNA-seq analysis in a tumor-bearing murine model, it is found that lobeline, an alkaloid from the herbal medicine lobelia, promotes polarization of tumor-associated macrophages (TAMs) toward M1-like TAMs while inhibiting their polarization toward M2-like TAMs.

View Article and Find Full Text PDF

In cancer research and personalized medicine, mesoporous silica nanoparticles (MSNs) have emerged as a significant breakthrough in both cancer treatment and diagnosis. MSNs offer targeted drug delivery, enhancing therapeutic effectiveness while minimizing adverse effects on healthy cells. Due to their unique characteristics, MSNs provide targeted drug delivery, maximizing therapeutic effectiveness with minimal adverse effects on healthy cells.

View Article and Find Full Text PDF

Stimuli-Responsive Nano Drug Delivery Systems for the Treatment of Neurological Diseases.

Small

January 2025

Molecular Imaging Center, National Center for Drug Screening, Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.

Nanomaterials with unparalleled physical and chemical attributes have become a cornerstone in the field of nanomedicine delivery. These materials can be engineered into various functionalized nanocarriers, which have become the focus of research. Stimulus-responsive nanodrug delivery systems (SRDDS) stand out as a sophisticated class of nanocarriers that can release drugs in response to environmental cues.

View Article and Find Full Text PDF

Therapeutic Black Phosphorus Nanosheets Elicit Neutrophil Response for Enhanced Tumor Suppression.

Adv Sci (Weinh)

January 2025

Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, P. R. China.

Black phosphorus (BP) has demonstrated potential as a drug carrier and photothermal agent in cancer therapy; however, its intrinsic functions in cancer treatment remain underexplored. This study investigates the immunomodulatory effects of polyethylene glycol-functionalized BP (BP-PEG) nanosheets in breast cancer models. Using immunocompetent mouse models-including 4T1 orthotopic BALB/c mice and MMTV-PyMT transgenic mice, it is found that BP-PEG significantly inhibits tumor growth and metastasis without directly inducing cytotoxicity in tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!