A Method for Evaluating Timeliness and Accuracy of Volitional Motor Responses to Vibrotactile Stimuli.

J Vis Exp

Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital; Institute of Biomaterials and Biomedical Engineering, University of Toronto.

Published: August 2016

Artificial sensory feedback (ASF) systems can be used to compensate for lost proprioception in individuals with lower-limb impairments. Effective design of these ASF systems requires an in-depth understanding of how the parameters of specific feedback mechanism affect user perception and reaction to stimuli. This article presents a method for applying vibrotactile stimuli to human participants and measuring their response. Rotating mass vibratory motors are placed at pre-defined locations on the participant's thigh, and controlled through custom hardware and software. The speed and accuracy of participants' volitional responses to vibrotactile stimuli are measured for researcher-specified combinations of motor placement and vibration frequency. While the protocol described here uses push-buttons to collect a simple binary response to the vibrotactile stimuli, the technique can be extended to other response mechanisms using inertial measurement units or pressure sensors to measure joint angle and weight bearing ratios, respectively. Similarly, the application of vibrotactile stimuli can be explored for body segments other than the thigh.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5091711PMC
http://dx.doi.org/10.3791/54223DOI Listing

Publication Analysis

Top Keywords

vibrotactile stimuli
20
responses vibrotactile
8
asf systems
8
stimuli
6
vibrotactile
5
method evaluating
4
evaluating timeliness
4
timeliness accuracy
4
accuracy volitional
4
volitional motor
4

Similar Publications

A synchronized event-cue feedback loop integrating a 3D printed wearable flexible sensor-tactor platform.

Biosens Bioelectron

January 2025

Department of Physics, Virginia Commonwealth University, Richmond, VA, 23284, USA; Institute for Sustainable Energy and Environment, Virginia Commonwealth University, Richmond, VA, 23284, USA. Electronic address:

Wearable devices designed for the somatosensory system aim to provide event-cue feedback electronics and therapeutic stimulation to the peripheral nervous system. This prompts a neurological response that is relayed back to the central nervous system. Unlike virtual reality tools, these devices precisely target peripheral mechanoreceptors by administering specific stimuli.

View Article and Find Full Text PDF

Mental imagery is a crucial cognitive process, yet its underlying neural mechanisms remain less understood compared to perception. Furthermore, within the realm of mental imagery, the somatosensory domain is particularly underexplored compared to other sensory modalities. This study aims to investigate the influence of tactile imagery (TI) on cortical somatosensory processing.

View Article and Find Full Text PDF

Source localization in EEG necessitates co-registering the EEG sensor locations with the subject's MRI, where EEG sensor locations are typically captured using electromagnetic tracking or 3D scanning of the subject's head with EEG cap, using commercially available 3D scanners. Both methods have drawbacks, where, electromagnetic tracking is slow and immobile, while 3D scanners are expensive. Photogrammetry offers a cost-effective alternative but requires multiple photos to sample the head, with good spatial sampling to adequately reconstruct the head surface.

View Article and Find Full Text PDF

Enhanced neural phase locking through audio-tactile stimulation.

Front Neurosci

October 2024

Multisensory Experience Lab, Department of Architecture, Design and Media Technology, Aalborg University Copenhagen, Copenhagen, Denmark.

Numerous studies have underscored the close relationship between the auditory and vibrotactile modality. For instance, in the peripheral structures of both modalities, afferent nerve fibers synchronize their activity to the external sensory stimulus, thereby providing a temporal code linked to pitch processing. The Frequency Following Response is a neurological measure that captures this phase locking activity in response to auditory stimuli.

View Article and Find Full Text PDF

A tactile event-related potential (ERP)-based brain-computer interface (BCI) system is an alternative for enhancing the control and communication abilities of quadriplegic patients with visual or auditory impairments. Hence, in this study, we proposed a tactile stimulus pattern using a vibrotactile stimulator for a multicommand BCI system. Additionally, we observed a tactile ERP response to the target from random vibrotactile stimuli placed in the left and right wrist and elbow positions to create commands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!