A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Suppressed Formation of Conductive Phases in One-Pot Electrodeposited CuInSe2 by Tuning Se Concentration in Aqueous Electrolyte. | LitMetric

The single-bath electrochemical deposition of CuInSe2 often leads to short-circuit behavior of the resulting solar cells due to the high shunt conductance. In this study, in an attempt to resolve this problem, the influence of the Se precursor concentration (CSe) on electrodeposited CuInSe2 films and solar cell devices is examined in the CSe range of 4.8 to 12.0 mM in selenite-based aqueous solutions containing Cu and In chlorides along with sulfamic acid (H3NSO3) and potassium hydrogen phthalate (C8H5KO4) additives. As CSe increases, the CuInSe2 layers become porous, and the grain growth of the CuInSe2 phase is restricted, while the parasitic shunting problem was markedly alleviated, as unambiguously demonstrated by measurements of the local current distribution. Due to these ambivalent influences, an optimal value of CSe that achieves the best quality of the films for high-efficiency solar cells is identified. Thus, the device prepared with 5.2 mM Se exhibits a power-conversion efficiency exceeding 10% with greatly improved device parameters, such as the shunt conductance and the reverse saturation current. The rationale of the present approach along with the physicochemical origin of its conspicuous impact on the resulting devices is discussed in conjunction with the electro-crystallization mechanism of the CuInSe2 compound.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b07065DOI Listing

Publication Analysis

Top Keywords

electrodeposited cuinse2
8
solar cells
8
shunt conductance
8
cuinse2
6
suppressed formation
4
formation conductive
4
conductive phases
4
phases one-pot
4
one-pot electrodeposited
4
cuinse2 tuning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!