Biofilms are complex communities of microorganisms, responsible for more than 60% of the chronic human infections and they represent one of the leading concerns in medicine. Pseudomonas aeruginosa is human pathogenic bacteria which causes numerous diseases and is known for its ability to produce biofilm. Ocimum basilicum L. (basil) and Salvia officinalis L. (sage) are widely used plants in traditional medicine for the treatment of different conditions. Therefore, the aim of this study was to investigate the potential of basil and sage essential oils against P. aeruginosa biofilm producing strains. The efficacy of two essential oils on P. aeruginosa biofilm forming ability was determined using crystal violet method. Out of 15 strains isolated from different clinical biological samples, two were strong, 11 moderate and one weak biofilm producer. Good efficacy of sage essential oil towards strong and weak biofilm producers, but not of basil essential oil, was observed. In the case of moderate biofilm producers, 81.8% showed lower biofilm production after incubation with the sage oil, while 63.6% showed the reduction of biofilm production after basil essential oil treatment. The obtained results showed high potential of both oils for the treatment of persistent infections caused by Pseudomonas aeruginosa biofilms.

Download full-text PDF

Source

Publication Analysis

Top Keywords

essential oils
12
essential oil
12
ocimum basilicum
8
salvia officinalis
8
pseudomonas aeruginosa
8
biofilm
8
sage essential
8
oils aeruginosa
8
aeruginosa biofilm
8
weak biofilm
8

Similar Publications

Surface Modifications and Antifungal Efficacy of Origanum Oil Incorporation in Denture-based Materials: An Study.

J Contemp Dent Pract

September 2024

Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil; Department of Dentistry, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands, ORCID: https://orcid.org/0000-0002-5166-8233.

Aim: This study aimed to assess if the addition of origanum oil to denture materials could decrease microorganisms counts and biofilm formation without changing their mechanical/surface properties.

Materials And Methods: A total of 66 resilient denture liner discs (SoftConfort, Dencril Comércio de Plásticos Ltda, SP, Brazil) were prepared with fixed dimensions of 10 × 3 mm for biofilm assay ( = 36) and 12 × 2 mm for sorption-solubility tests ( = 30) containing three oil concentrations - 0, 2.5 and 5%, thereby = 12 per each group samples for biofilm assay and = 10 per each group for sorption-solubility test respectively.

View Article and Find Full Text PDF

Phytochemicals have been effectively used to enhance the growth and productivity of farm animals, while the potential roles of essential oils and their nano-emulsions are limited. This plan was proposed to investigate the impacts of orally administered moringa oil (MO) or its nano-emulsion (NMO) on the growth, physiological response, blood health, semen attributes, and sperm antioxidant-related genes in rams. A total of 15 growing Rahmani rams were enrolled in this study and allotted into three groups.

View Article and Find Full Text PDF

Tuta absoluta is one of the most destructive pests of tomatoes. Chemical insecticides used to control this leafminer harm all organisms, increasing the risk to public health and the environment. Developing natural alternatives, such as bioinsecticides formulated from essential plant oils, is a key strategy to address this problem.

View Article and Find Full Text PDF

This study examined the effects of supplementing dairy cows with a mixture of essential oils on enteric CH emissions, apparent total-tract nutrient digestibility, N utilization, and lactational performance (production, components and efficiency). Thirty-two multiparous lactating Holstein cows were used in a randomized complete block design. Cows averaged (mean ± SD) 95 ± 15.

View Article and Find Full Text PDF

Rapid metabolic fingerprinting meets machine learning models to identify authenticity and detect adulteration of essential oils with vegetable oils: Mentha and Ocimum study.

Food Chem

December 2024

International Joint Research Centre on Food Security, Pathum Thani 12120, Thailand; Institute for Global Food Security (IGFS), School of Biological Sciences, Queen's University Belfast (QUB), BT9 5DL, UK.

Essential oils (EOs) are gaining popularity due to their potent antibacterial properties, as well as their applications in food preservation and flavor enhancement, offering growth opportunities for the food industry. However, their widespread use as food preservatives is limited by authenticity challenges, primarily stemming from adulteration with cheaper oils. This study investigated a rapid, cost-effective, and non-destructive method for assessing the authenticity of widely used Mentha and Ocimum EOs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!