NMR WaterLOGSY Reveals Weak Binding of Bisphenol A with Amyloid Fibers of a Conserved 11 Residue Peptide from Androgen Receptor.

PLoS One

Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U596, CNRS UMR 7104, Université de Strasbourg, Illkirch-Graffenstaden, France.

Published: August 2017

There is growing evidence that bisphenol A (BPA), a molecule largely released in the environment, has detrimental effects on ecosystems and on human health. It acts as an endocrine disruptor targeting steroid hormone receptors, such as the estrogen receptor (ER), estrogen-related receptor (ERR) and androgen receptor (AR). BPA-derived molecules have recently been shown to interact with the AR N-terminal domain (AR-NTD), which is known to be largely intrinsically disordered. This N-terminal domain contains an 11 residue conserved domain that forms amyloid fibers upon oxidative dimerisation through its strictly conserved Cys240 residue. We investigate here the interaction of BPA, and other potential endocrine disruptors, with AR-NTD amyloid fibers using the WaterLOGSY NMR experiment. We observed a selective binding of these compounds to the amyloid fibers formed by the AR-NTD conserved region and glutamine homopolymers. This observation suggests that the high potency of endocrine disruptors may result, in part, from their ability to bind amyloid forms of nuclear receptors in addition to their cognate binding sites. This property may be exploited to design future therapeutic strategies targeting AR related diseases such as the spinal bulbar muscular atrophy or prostate cancer. The ability of NMR WaterLOGSY experiments to detect weak interactions between small ligands and amyloid fibers may prove to be of particular interest for identifying promising hit molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5008648PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0161948PLOS

Publication Analysis

Top Keywords

amyloid fibers
20
nmr waterlogsy
8
androgen receptor
8
n-terminal domain
8
endocrine disruptors
8
amyloid
6
fibers
5
waterlogsy reveals
4
reveals weak
4
weak binding
4

Similar Publications

Unveiling the multifaceted potential of amyloid fibrils: from pathogenic myths to biotechnological marvels.

Biophys Rev

December 2024

Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, 201313 Noida, India.

Amyloid fibrils, historically stigmatized due to their association with diseases like Alzheimer's and Parkinson's, are now recognized as a distinct class of functional proteins with extraordinary potential. These highly ordered, cross-β-sheet protein aggregates are found across all domains of life, playing crucial physiological roles. In bacteria, functional amyloids like curli fibers are essential for surface adhesion, biofilm formation, and viral DNA packaging.

View Article and Find Full Text PDF

Background: The potential diagnostic value of plasma amyloidogenic beta residue 42/40 ratio (Aβ42/Aβ40 ratio), neurofilament light (NfL), tau phosphorylated at threonine-181 (p-tau181), and threonine-217 (p-tau217) has been extensively discussed in the literature. We have also previously described the association between retinal biomarkers and preclinical Alzheimer's disease (AD). The goal of this study was to evaluate the association, and a multimodal model of, retinal and plasma biomarkers for detection of preclinical AD.

View Article and Find Full Text PDF

Background: The levels of β-amyloid precursor protein (β-APP), tau protein, and phosphorylation of tau (p-tau) protein were examined by quantitative immunohistochemistry in the spinal cord sections of mice suffering from experimental autoimmune encephalomyelitis (EAE) in the successive phases of the disease: onset, peak, and chronic.

Methods: EAE was induced in C57BL/6 mice by immunization with MOG35-55 peptide. The degree of pathological changes was assessed in cross-sections of the entire spinal cord.

View Article and Find Full Text PDF

Efficient Biochemical Method for Characterizing and Classifying Related Amyloidogenic Peptides.

Anal Chem

January 2025

Institut de Recherche en Santé, Environnement et Travail (Irset)─Inserm─EHESP, UMR_S 1085, Université de Rennes, 9 av. du Professeur Léon Bernard, F-35042 Rennes, France.

Amyloidosis is a group of proteinopathies characterized by the systemic or organ-specific deposition of proteins in the form of amyloid fibers. Nearly 40 proteins play a role in these pathologies, and the structures of the associated fibers are beginning to be determined by Cryo-EM. However, the molecular events underlying the process, such as fiber nucleation and elongation, are poorly understood, which impairs developing efficient therapies.

View Article and Find Full Text PDF

Repurposing of Agrochemicals as ATTRv Amyloidosis Inhibitors.

J Med Chem

January 2025

Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.

Transthyretin (TTR), a plasma protein, undergoes transformation into amyloid fibers, leading to ATTRv amyloidosis, a disease characterized by organ deposition of TTR amyloid fibrils and subsequent organ failure. Developing compounds that bind and kinetically stabilize TTR is a crucial strategy in the treatment of ATTRv amyloidosis. In this study, we narrowed 651 pesticide-related compounds down to 14 possible TTR binders through in silico screening; subsequent in vitro analysis revealed that 7 of them exhibited amyloid fibril formation inhibition activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!