Background: Lateral epicondylitis (LE) occurs in almost half of all tennis players. Racket-string tension is considered to be an important factor influencing the development of LE. No literature yet exists that substantiates how string-tension affects force transmission to the elbow, as implicated in LE development. We establish a quantitative relationship between string-tension and elbow loading, analyzing tennis strokes using rackets with varying string-tensions.
Methods: Twenty recreational tennis players simulated backhand tennis strokes using three rackets strung at tensions of 200 N, 222 N and 245 N. Accelerometers recorded accelerations at the elbow, wrist and racket handle. Average peak acceleration was determined to correlate string-tension with elbow loading.
Results: Statistically significant differences (p < 0.05) were observed when average peak acceleration at the elbow at 200 N string-tension (acceleration of 5.58 m/s(2)) was compared with that at 222 N tension (acceleration of 6.83 m/s(2)) and 245 N tension (acceleration of 7.45 m/s(2)). The 200 N racket induced the least acceleration at the elbow.
Conclusions: Although parameters determining force transmission to the elbow during a tennis stroke are complex, the present study was able to control these parameters, isolating the effect of string-tension. Lower string-tensions transmit less force to the elbow in backhand strokes. Reducing string-tension should be considered favourably with respect to reducing the risk of developing LE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4950282 | PMC |
http://dx.doi.org/10.1177/1758573216640201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!