In different fungal and algal species, the intracellular concentration of reduced glutathione (GSH) correlates closely with their susceptibility to killing by the small molecule alkylating agent 3-bromopyruvate (3BP). Additionally, in the case of Cryptococcus neoformans cells 3BP exhibits a synergistic effect with buthionine sulfoximine (BSO), a known GSH depletion agent. This effect was observed when 3BP and BSO were used together at concentrations respectively of 4-5 and almost 8 times lower than their Minimal Inhibitory Concentration (MIC). Finally, at different concentrations of 3BP (equal to the half-MIC, MIC and double-MIC in a case of fungi, 1 mM and 2.5 mM for microalgae and 25, 50, 100 μM for human multiple myeloma (MM) cells), a significant decrease in GSH concentration is observed inside microorganisms as well as tumor cells. In contrast to the GSH concentration decrease, the presence of 3BP at concentrations corresponding to sub-MIC values or half maximal inhibitory concentration (IC50) clearly results in increasing the expression of genes encoding enzymes involved in the synthesis of GSH in Cryptococcus neoformans and MM cells. Moreover, as shown for the first time in the MM cell model, the drastic decrease in the ATP level and GSH concentration and the increase in the amount of ROS caused by 3BP ultimately results in cell death.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5323179PMC
http://dx.doi.org/10.18632/oncotarget.11592DOI Listing

Publication Analysis

Top Keywords

gsh concentration
12
fungal algal
8
multiple myeloma
8
cryptococcus neoformans
8
neoformans cells
8
inhibitory concentration
8
concentration
6
gsh
6
3bp
6
glutathione implications
4

Similar Publications

Study on the Synergistic Effect of Klotho and KRAS on Reducing Ferroptosis After Myocardial Infarction by Regulating RAP1/ERK Signaling Pathway.

Appl Biochem Biotechnol

January 2025

Department of Internal Medicine-Cardiovascular, Guangzhou Twelfth People's Hospital, No.1, Tianqiang Road, Tianhe District, Guangzhou City, Guangdong Province, 510620, China.

Myocardial infarction (MI) is a coronary artery-related disease that seriously threatens human life and is the leading cause of sudden death worldwide, where a lack of nutrients and oxygen leads to an inflammatory response and death of cardiomyocytes. Ferroptosis is a form of non-apoptotic cell death associated with metabolic dysfunction, resulting in abnormal breakdown of glutamine and iron-dependent accumulation of reactive oxygen species (ROS) during metabolism. However, the molecular mechanism of ferroptosis in the pathogenesis of MI and the function of Klotho and KRAS on ferroptosis during MI remain unclear.

View Article and Find Full Text PDF

The Protective Effects of Annexin A1 in Acute Lung Injury Mediated by Nrf2.

Immun Inflamm Dis

January 2025

Department of Respiratory and Critical Care Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Background: Acute lung injury (ALI), one of the most severe respiratory system diseases, is prevalent worldwide. Annexin A1 (AnxA1) is an important member of the annexin superfamily, known for its wide range of physiological functions. However, its potential protective effect against lipopolysaccharide (LPS)-induced ALI remains unclear.

View Article and Find Full Text PDF

This study primarily investigated the mechanism of Astragalus polysaccharides(APS), a Chinese medicinal material, in regulating the Nrf2/SLC7A11/GPX4 signaling pathway to induce ferroptosis in ovarian cancer cells(Caov-3 and SKOV3 cells). Caov-3 and SKOV3 cells were divided into control(Vehicle) group, APS group, glutathione peroxidase 4 inhibitor(RSL3) group, and APS+RSL3 group. After 48 h of intervention, the activity and morphology of the cells in each group were observed.

View Article and Find Full Text PDF

This study aims to investigate the mechanism of tanshinone Ⅱ_A(Tan Ⅱ_A) in protecting mice from diethylinitrosamine(DEN)/carbon tetrachloride(CCl_4)/ethanol(C_2H_5OH)-induced hepatocellular carcinoma(HCC) and HepG2 cells from hydrogen peroxide(H_2O_2)-induced oxidative damage via the phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt) and nuclear factor E2-related factor 2(Nrf2)/heme oxygenase 1(HO-1) signaling pathways. Sixty male C57BL/6J mice were grouped as follows: control, model, low, medium, and high-dose(10, 20, 40 mg·kg~(-1), respectively) Tan Ⅱ_A, and colchicine(0.2 mg·kg~(-1)), with 10 mice in each group.

View Article and Find Full Text PDF

Ulcerative colitis (UC), a persistent immune-mediated disorder lacking effective treatment, is distinguished by gut microbiota dysbiosis, abnormal activation of the NLRP3 inflammasome pathway, and apoptosis. Despite growing attention to these factors, understanding their significance in UC pathogenesis remains a challenge. The present study explores the potential therapeutic impact of (Bc) spores in a murine UC model induced by drinking 4 % (w/v) dextran sulfate sodium (DSS) in C57BL/6 mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!