We investigated the role of KNOX genes in legume root nodule organogenesis. Class 1 KNOX homeodomain transcription factors (TFs) are involved in plant shoot development and leaf shape diversity. Class 2 KNOX genes are less characterized, even though an antagonistic function relative to class 1 KNOXs was recently proposed. In silico expression data and further experimental validation identified in the Medicago truncatula model legume three class 2 KNOX genes, belonging to the KNAT3/4/5-like subclass (Mt KNAT3/4/5-like), as expressed during nodulation from early stages. RNA interference (RNAi)-mediated silencing and overexpression studies were used to unravel a function for KNOX TFs in nodule development. Mt KNAT3/4/5-like genes encoded four highly homologous proteins showing overlapping expression patterns during nodule organogenesis, suggesting functional redundancy. Simultaneous reduction of Mt KNAT3/4/5-like genes indeed led to an increased formation of fused nodule organs, and decreased the expression of the MtEFD (Ethylene response Factor required for nodule Differentiation) TF and its direct target MtRR4, a cytokinin response gene. Class 2 KNOX TFs therefore regulate legume nodule development, potentially through the MtEFD/MtRR4 cytokinin-related regulatory module, and may control nodule organ boundaries and shape like class 2 KNOX function in leaf development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.14146 | DOI Listing |
Elife
January 2025
The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.
encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β, or p110δ. Constitutional mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430000, China.
Nat Commun
November 2024
Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK.
The non-polymorphic HLA-E molecule offers opportunities for new universal immunotherapeutic approaches to chronic infectious diseases. Chronic Hepatitis B virus (HBV) infection is driven in part by T cell dysfunction due to elevated levels of the HBV envelope (Env) protein hepatitis B surface antigen (HBsAg). Here we report the characterization of three genotypic variants of an HLA-E-binding HBsAg peptide, Env identified through bioinformatic predictions and verified by biochemical and cellular assays.
View Article and Find Full Text PDFGene
January 2025
College of Eco-environmental Engineering, Qinghai University, Xining 810016, Qinghai, China. Electronic address:
Awns in barley have different shapes including awnless, straight, hooded, crooked, and leafy awns. The hooded awns are characterized by an appendage of the lemma, which forms a trigonal or cap-shaped structure, and even blossoms and yields fruits on barley awn. In the lemma primordia of wild-type (straight awn), cells divide and elongate to form the straight awn.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!