Interactions between demography, genetics, and landscape connectivity increase extinction probability for a small population of large carnivores in a major metropolitan area.

Proc Biol Sci

La Kretz Center for California Conservation, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA National Park Service, Santa Monica Mountains National Recreation Area, Thousand Oaks, CA 91302, USA Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.

Published: August 2016

AI Article Synopsis

  • The extinction vortex is a theoretical model indicating how small, isolated populations face increased extinction risks due to various interacting factors, but real-world evidence has been limited.
  • A study on a mountain lion population in greater Los Angeles showed stable growth but demonstrated a significant risk of extinction (up to 99.7%) as genetic diversity decreased due to inbreeding.
  • Enhancing landscape connectivity by allowing more immigration can help maintain genetic diversity, reduce extinction risks, and support the idea that genetic and demographic factors interact critically in the extinction vortex.

Article Abstract

The extinction vortex is a theoretical model describing the process by which extinction risk is elevated in small, isolated populations owing to interactions between environmental, demographic, and genetic factors. However, empirical demonstrations of these interactions have been elusive. We modelled the dynamics of a small mountain lion population isolated by anthropogenic barriers in greater Los Angeles, California, to evaluate the influence of demographic, genetic, and landscape factors on extinction probability. The population exhibited strong survival and reproduction, and the model predicted stable median population growth and a 15% probability of extinction over 50 years in the absence of inbreeding depression. However, our model also predicted the population will lose 40-57% of its heterozygosity in 50 years. When we reduced demographic parameters proportional to reductions documented in another wild population of mountain lions that experienced inbreeding depression, extinction probability rose to 99.7%. Simulating greater landscape connectivity by increasing immigration to greater than or equal to one migrant per generation appears sufficient to largely maintain genetic diversity and reduce extinction probability. We provide empirical support for the central tenet of the extinction vortex as interactions between genetics and demography greatly increased extinction probability relative to the risk from demographic and environmental stochasticity alone. Our modelling approach realistically integrates demographic and genetic data to provide a comprehensive assessment of factors threatening small populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013791PMC
http://dx.doi.org/10.1098/rspb.2016.0957DOI Listing

Publication Analysis

Top Keywords

extinction probability
20
demographic genetic
12
extinction
9
landscape connectivity
8
extinction vortex
8
model predicted
8
inbreeding depression
8
probability
6
population
6
demographic
5

Similar Publications

Unlabelled: Evolution of cooperation is a major, extensively studied problem in evolutionary biology. Cooperation is beneficial for a population as a whole but costly for the bearers of social traits such that cheaters enjoy a selective advantage over cooperators. Here we focus on coevolution of cooperators and cheaters in a multi-level selection framework, by modeling competition among groups composed of cooperators and cheaters.

View Article and Find Full Text PDF

Inbreeding depression poses a severe threat to small populations, leading to the fixation of deleterious mutations and decreased survival probability. While the establishment of natural gene flow between populations is an ideal long-term solution, its practical implementation is often challenging. Reinforcement of populations by translocating individuals from larger populations is a viable strategy for reducing inbreeding, increasing genetic diversity and potentially saving populations from extinction.

View Article and Find Full Text PDF

This paper is devoted to the investigation of the plasmonic effect of metal nanoparticles (NPs) formed on the surface of the YAG: Bi, Ce, Yb phosphors in a temperature range between 4 and 300 K. Combination of a thin conversion layer with silver plasmonic nanostructures leads to increase of sensitizer absorption and emission efficiency. Enhancement of Bi luminescence in YAG epitaxial films with Ag NPs was observed upon cooling the samples below 200 K.

View Article and Find Full Text PDF

Measuring trends in extinction risk: a review of two decades of development and application of the Red List Index.

Philos Trans R Soc Lond B Biol Sci

January 2025

BirdLife International, David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK.

The Red List Index (RLI) is an indicator of the average extinction risk of groups of species and reflects trends in this through time. It is calculated from the number of species in each category on the IUCN Red List of Threatened Species, with trends influenced by the number moving between categories when reassessed owing to genuine improvement or deterioration in status. The global RLI is aggregated across multiple taxonomic groups and can be disaggregated to show trends for subsets of species (e.

View Article and Find Full Text PDF

Human-driven habitat loss is recognized as the greatest cause of the biodiversity crisis, yet to date we lack robust, spatially explicit metrics quantifying the impacts of anthropogenic changes in habitat extent on species' extinctions. Existing metrics either fail to consider species identity or focus solely on recent habitat losses. The persistence score approach developed by Durán .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!