Unlabelled: Neuroplastin (Nptn) is a member of the Ig superfamily and is expressed in two isoforms, Np55 and Np65. Np65 regulates synaptic transmission but the function of Np55 is unknown. In an N-ethyl-N-nitrosaurea mutagenesis screen, we have now generated a mouse line with an Nptn mutation that causes deafness. We show that Np55 is expressed in stereocilia of outer hair cells (OHCs) but not inner hair cells and affects interactions of stereocilia with the tectorial membrane. In vivo vibrometry demonstrates that cochlear amplification is absent in Nptn mutant mice, which is consistent with the failure of OHC stereocilia to maintain stable interactions with the tectorial membrane. Hair bundles show morphological defects as the mutant mice age and while mechanotransduction currents can be evoked in early postnatal hair cells, cochlea microphonics recordings indicate that mechanontransduction is affected as the mutant mice age. We thus conclude that differential splicing leads to functional diversification of Nptn, where Np55 is essential for OHC function, while Np65 is implicated in the regulation of synaptic function.
Significance Statement: Amplification of input sound signals, which is needed for the auditory sense organ to detect sounds over a wide intensity range, depends on mechanical coupling of outer hair cells to the tectorial membrane. The current study shows that neuroplastin, a member of the Ig superfamily, which has previously been linked to the regulation of synaptic plasticity, is critical to maintain a stable mechanical link of outer hair cells with the tectorial membrane. In vivo recordings demonstrate that neuroplastin is essential for sound amplification and that mutation in neuroplastin leads to auditory impairment in mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005726 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0093-16.2016 | DOI Listing |
Sheng Li Xue Bao
December 2024
Skin Disease Research Institute, the Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310058, China.
Skin, as the body's largest organ, acts as the primary defense mechanism against infection and injury. The maintenance of skin health heavily relies on the regulation of epidermal stem cells, crucial for ensuring epidermal homeostasis, hair regeneration, and the repair of epidermal injuries. Recent studies have placed a growing emphasis on G protein-coupled receptor (GPCR) in the context of understanding epidermal stem cells, uncovering its significant role in determining their fate.
View Article and Find Full Text PDFJ Neurosci
January 2025
Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York, 14642, USA;
The inner ear houses both hearing and balance sensory modalities. The hearing and balance organs consist of similar cell types, including sensory hair cells and associated supporting cells. Previously we showed that is required for maintaining supporting cell survival during cochlear maturation.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Physiology, University of Kentucky, Lexington, KY, United States.
Auditory hair cells form precise and sensitive staircase-like actin protrusions known as stereocilia. These specialized microvilli detect deflections induced by sound through the activation of mechano-electrical transduction (MET) channels located at their tips. At rest, a small MET channel current results in a constant calcium influx which regulates the morphology of the actin cytoskeleton in the shorter 'transducing' stereocilia.
View Article and Find Full Text PDFVertigo is a common symptom of various diseases that affects a large number of people worldwide. Current leading treatments for intractable peripheral vertigo are to intratympanically inject ototoxic drugs such as gentamicin to attenuate the semicircular canal function but inevitably cause hearing injury. Photodynamic therapy (PDT) is a noninvasive therapeutic approach by precisely targeting the diseased tissue.
View Article and Find Full Text PDFJ Otol
October 2024
Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, 130021, Jilin, China.
Noise-induced hearing loss (NIHL) is primarily driven by inflammatory processes within the cochlea, where noise exposure triggers the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, leading to an inflammatory cascade. The interaction between increased NLRP3 expression and NF-κB activity can further amplify cochlear inflammation. Our findings reveal that (R)-PFI-2 hydrochloride, a selective inhibitor of the SETD7 enzyme, effectively inhibits the activation of the cochlear NF-κB pathway, suppresses the release of pro-inflammatory factors, and prevents inflammasome assembly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!