Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A polyene compound NPP identified in Pseudonocardia autotrophica was shown to contain an aglycone identical to nystatin, but to harbor a unique disaccharide moiety that led to higher solubility and reduced hemolytic activity. Recently, it was revealed that the final step of NPP (nystatin-like polyene) biosynthesis is C10 regio-specific hydroxylation by the cytochrome P450 hydroxylase (CYP) NppL (Kim et al. [7]). Through mutation and cross-complementation, here we found that NppL preferred a polyene substrate containing a disaccharide moiety for C10 hydroxylation, while its orthologue NysL involved in nystatin biosynthesis showed no substrate preference toward mono- and disaccharide moieties, suggesting that two homologous polyene CYPs, NppL and NysL might possess a unique domain recognizing a sugar moiety. Two hybrid NppL constructs containing the C-terminal domain of NysL exhibited no substrate preference toward 10-deoxy NPP and 10-deoxy nystatin-like NysL, implying that the C-terminal domain plays a major role in differentiating the sugar moiety responsible for substrate specificity. Further C-terminal domain dissection of NppL revealed that the last fifty amino acids play a critical role in determining substrate specificity of polyene-specific hydroxylation, setting the stage for the biotechnological application of hydroxyl diversification for novel polyene biosynthesis in actinomycetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10295-016-1813-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!