A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiplexed imaging reveals heterogeneity of PI3K/MAPK network signaling in breast lesions of known PIK3CA genotype. | LitMetric

Purpose: Activating genetic changes in the phosphatidylinositol-3-kinase (PI3K) signaling pathway are found in over half of invasive breast cancers (IBCs). Previously, we discovered numerous hotspot PIK3CA mutations in proliferative breast lesions. Here, we investigate the spatial nature of PI3K pathway signaling and its relationship with PI3K genotype in breast lesions.

Methods: We identified PI3K phosphosignaling network signatures in columnar cell change (CCL), usual ductal hyperplasia (UDH), ductal carcinoma in situ (DCIS), and IBC in 26 lesions of known PIK3CA genotype from 10 human breast specimens using a hyperspectral-based multiplexed tissue imaging platform (MTIP) to simultaneously quantitate PI3K/MAPK pathway targets (pAKT473, pAKT308, pPRAS40, pS6, and pERK) in FFPE tissue, with single-cell resolution.

Results: We found that breast lesional epithelia contained spatially heterogeneous patterns of PI3K pathway phosphoprotein signatures, even within microscopic areas of CCL, UDH, DCIS, and IBC. Most lesions contained 3-12 unique phosphoprotein signatures within the same microscopic field. The dominant phosphoprotein signature for each lesion was not well correlated with lesion genotype or lesion histology, yet samples from the same patient tended to group together. Further, 5 UDH/CCL lesions across different patients had a common phosphosignature at the epithelial-stromal interface (possible myoepithelial cells) that was distinct from both the adjacent lesional epithelium and distinct from adjacent stroma.

Conclusion: We present the first spatial mapping of PI3K phosphoprotein networks in proliferative breast lesions and demonstrate complex PI3K signaling heterogeneity that defies simple correlation between PIK3CA genotype and phosphosignal pattern.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762199PMC
http://dx.doi.org/10.1007/s10549-016-3962-1DOI Listing

Publication Analysis

Top Keywords

breast lesions
12
pik3ca genotype
12
lesions pik3ca
8
pi3k signaling
8
proliferative breast
8
pi3k pathway
8
dcis ibc
8
ibc lesions
8
phosphoprotein signatures
8
signatures microscopic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!