A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and external validation of a faecal immunochemical test-based prediction model for colorectal cancer detection in symptomatic patients. | LitMetric

AI Article Synopsis

  • This study developed and validated a colorectal cancer (CRC) prediction model called COLONPREDICT, using clinical and laboratory data from patients with gastrointestinal symptoms referred for colonoscopy.
  • The model included 11 key variables, including age, gender, and specific test results, achieving a diagnostic accuracy with an area under the curve (AUC) of 0.92.
  • COLONPREDICT outperformed the existing NICE referral criteria, which had a significantly lower AUC of 0.59, indicating it may be a better tool for CRC detection.

Article Abstract

Background: Risk prediction models for colorectal cancer (CRC) detection in symptomatic patients based on available biomarkers may improve CRC diagnosis. Our aim was to develop, compare with the NICE referral criteria and externally validate a CRC prediction model, COLONPREDICT, based on clinical and laboratory variables.

Methods: This prospective cross-sectional study included consecutive patients with gastrointestinal symptoms referred for colonoscopy between March 2012 and September 2013 in a derivation cohort and between March 2014 and March 2015 in a validation cohort. In the derivation cohort, we assessed symptoms and the NICE referral criteria, and determined levels of faecal haemoglobin and calprotectin, blood haemoglobin, and serum carcinoembryonic antigen before performing an anorectal examination and a colonoscopy. A multivariate logistic regression analysis was used to develop the model with diagnostic accuracy with CRC detection as the main outcome.

Results: We included 1572 patients in the derivation cohort and 1481 in the validation cohorts, with a 13.6 % and 9.1 % CRC prevalence respectively. The final prediction model included 11 variables: age (years) (odds ratio [OR] 1.04, 95 % confidence interval [CI] 1.02-1.06), male gender (OR 2.2, 95 % CI 1.5-3.4), faecal haemoglobin ≥20 μg/g (OR 17.0, 95 % CI 10.0-28.6), blood haemoglobin <10 g/dL (OR 4.8, 95 % CI 2.2-10.3), blood haemoglobin 10-12 g/dL (OR 1.8, 95 % CI 1.1-3.0), carcinoembryonic antigen ≥3 ng/mL (OR 4.5, 95 % CI 3.0-6.8), acetylsalicylic acid treatment (OR 0.4, 95 % CI 0.2-0.7), previous colonoscopy (OR 0.1, 95 % CI 0.06-0.2), rectal mass (OR 14.8, 95 % CI 5.3-41.0), benign anorectal lesion (OR 0.3, 95 % CI 0.2-0.4), rectal bleeding (OR 2.2, 95 % CI 1.4-3.4) and change in bowel habit (OR 1.7, 95 % CI 1.1-2.5). The area under the curve (AUC) was 0.92 (95 % CI 0.91-0.94), higher than the NICE referral criteria (AUC 0.59, 95 % CI 0.55-0.63; p < 0.001). On the basis of the thresholds with 90 % (5.6) and 99 % (3.5) sensitivity, we divided the derivation cohort into three risk groups for CRC detection: high (30.9 % of the cohort, positive predictive value [PPV] 40.7 %, 95 % CI 36.7-45.9 %), intermediate (29.5 %, PPV 4.4 %, 95 % CI 2.8-6.8 %) and low (39.5 %, PPV 0.2 %, 95 % CI 0.0-1.1 %). The discriminatory ability was equivalent in the validation cohort (AUC 0.92, 95 % CI 0.90-0.94; p = 0.7).

Conclusions: COLONPREDICT is a highly accurate prediction model for CRC detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007726PMC
http://dx.doi.org/10.1186/s12916-016-0668-5DOI Listing

Publication Analysis

Top Keywords

prediction model
12
derivation cohort
12
colorectal cancer
8
detection symptomatic
8
symptomatic patients
8
crc detection
8
nice referral
8
referral criteria
8
faecal haemoglobin
8
blood haemoglobin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!