Glycyrrhizic acid (GA) is a triterpene glycoside extracted from licorice root. Due to its amphiphilicity GA is capable of forming complexes with a variety of hydrophobic molecules, substantially increasing their solubility. GA can enhance the therapeutic effects of various drugs. It was hypothesized that the increased bioavailability of the drug by GA is not only due to increased solubility, but also to enhancement of drug permeability through cell membranes. In this study the interaction of GA with POPC liposomes and model DOPC, POPC and DPPC bilayers was investigated by NMR with addition of shift reagents and MD simulations. This work helps to better understand the mechanism of enhanced drug bioavailability in the presence of GA. NMR and MD reveal that GA does penetrate into the lipid bilayer. NMR shows that GA changes the mobility of lipids. GA is predominantly located in the outer "half-layer" of the liposome and that the middle of the hydrophobic tails is the preferred location. GA freely passes through the bilayer surface to the inner part bringing a few water molecules. Also both approaches indicate pore formation in the presence of GA. The GA interaction with membranes is an additional aspect of the biological activity of GA-based drug delivery systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2016.08.037 | DOI Listing |
J Nat Prod
January 2025
Marbio, Norwegian College of Fishery Science (NFH), Faculty of Biosciences, Fisheries, and Economics, UiT-The Arctic University of Norway, Tromsø 9037, Norway.
Heliyon
January 2025
Division of Polymer Chemistry, Department of Chemistry, Atomic Energy Commission, P.O. Box: 6091, Damascus, Syrian Arab Republic.
The degree of sulfonation (DS) is a key property of sulfonated polymers, as it significantly influences their swelling behaviour, conductivity and mechanical properties. Accurately determining the DS is essential for optimizing these materials for various applications. In this work, the DS of sulfonated poly (ether ether ketone) (SPEEK) was evaluated using a combination of analytical techniques, including titration, back titration, Fourier Transform Infrared (FTIR), Ultra-Violet (UV) and proton nuclear magnetic resonance (H NMR) spectroscopies, Thermogravimetric analysis (TGA), Rutherford backscattering (RBS) and particle induced X-ray emission (PIXE) analysis.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
Chronic myeloid leukaemia (CML) is primarily treated using imatinib mesylate, a tyrosine kinase inhibitor (TKI) targeting the BCR::ABL1 oncoprotein. However, the development of drug resistance and adverse side effects necessitate the exploration of alternative therapeutic agents. This study presents the synthesis and characterization of a novel imatinib analogue, 3-chloro--(2-methyl-5-((4-(pyridin-2-yl)pyrimidin-2-yl)amino)phenyl)benzamide (PAPP1).
View Article and Find Full Text PDFJ Biomol NMR
January 2025
Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
The NMR signals from protein sidechains are rich in information about intra- and inter-molecular interactions, but their detection can be complicated due to spectral overlap as well as conformational and hydrogen exchange. In this work, we demonstrate a protocol for multi-dimensional solid-state NMR spectral editing of signals from basic sidechains based on Hadamard matrix encoding. The Hadamard method acquires multi-dimensional experiments in such a way that both the backbone and under-sampled sidechain signals can be decoded for unambiguous editing in the N spectral frequency dimension.
View Article and Find Full Text PDFJ Oleo Sci
January 2025
Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology.
Coelomic fluid of earthworms is a valuable source of novel bioactive compounds with therapeutic applications. To gain insight into the bioactive compounds in the coelomic fluid, this study used Perionyx excavatus, a tropical earthworm distinguished for its remarkable ability for regeneration. This study aimed to identify fluorescent bioactive compounds in the coelomic fluid of P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!