Two spatially and temporally distinct Ca signals convey Arabidopsis thaliana responses to K deficiency.

New Phytol

State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, National Plant Gene Research Centre (Beijing), China Agricultural University, Beijing, 100193, China.

Published: January 2017

In plants, potassium (K ) homeostasis is tightly regulated and established against a concentration gradient to the environment. Despite the identification of Ca -regulated kinases as modulators of K channels, the immediate signaling and adaptation mechanisms of plants to low-K conditions are only partially understood. To assess the occurrence and role of Ca signals in Arabidopsis thaliana roots, we employed ratiometric analyses of Ca dynamics in plants expressing the Ca reporter YC3.6 in combination with patch-clamp analyses of root cells and two-electrode voltage clamp (TEVC) analyses in Xenopus laevis oocytes. K deficiency triggers two successive and distinct Ca signals in roots exhibiting spatial and temporal specificity. A transient primary Ca signature arose within 1 min in the postmeristematic stelar tissue of the elongation zone, while a secondary Ca response occurred after several hours as sustained Ca elevation in defined tissues of the elongation and root hair differentiation zones. Patch-clamp and TEVC analyses revealed Ca dependence of the activation of the K channel AKT1 by the CBL1-CIPK23 Ca sensor-kinase complex. Together, these findings identify a critical role of cell group-specific Ca signaling in low K responses and indicate an essential and direct role of Ca signals for AKT1 K channel activation in roots.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.14145DOI Listing

Publication Analysis

Top Keywords

distinct signals
8
arabidopsis thaliana
8
role signals
8
tevc analyses
8
spatially temporally
4
temporally distinct
4
signals
4
signals convey
4
convey arabidopsis
4
thaliana responses
4

Similar Publications

The link of FOXO1 and FOXO4 transcription factors to development of the lens.

Dev Dyn

January 2025

Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

Background: The FOXOs regulate the transcription of many genes, including ones directly linked to pathways required for lens development. However, this transcription factor family has rarely been studied in the context of development, including the development of the lens. FOXO expression, regulation, and function during lens development remained unexplored.

View Article and Find Full Text PDF

Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium.

View Article and Find Full Text PDF

Breast cancer (BC) is one of the most lethal cancers worldwide, and its early diagnosis is critical for improving patient survival rates. However, the extraction of key information from complex medical images and the attainment of high-precision classification present a significant challenge. In the field of signal processing, texture-rich images typically exhibit periodic patterns and structures, which are manifested as significant energy concentrations at specific frequencies in the frequency domain.

View Article and Find Full Text PDF

The manuscript conducts a comparative analysis to assess the impact of noise on medical images using a proposed threshold value estimation approach. It applies an innovative method for edge detection on images of varying complexity, considering different noise types and concentrations of noise. Five edges are evaluated on images with low, medium, and high detail levels.

View Article and Find Full Text PDF

The integration of liveness detection into biometric systems is crucial for countering spoofing attacks and enhancing security. This study investigates the efficacy of photoplethysmography (PPG) signals, which offer distinct advantages over traditional biometric techniques. PPG signals are non-invasive, inherently contain liveness information that is highly resistant to spoofing, and are cost-efficient, making them a superior alternative for biometric authentication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!