Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A wide variety of recent work has demonstrated that the thermal conductivity of polymers can be improved dramatically through the alignment of polymer chains in the direction of heat transfer. Most of the polymeric samples exhibit high conductivity in either the axial direction of a fiber or in the in-plane direction of a thin film, while the most useful direction for thermal management is often the cross-plane direction of a film. Here we show poly(3-methylthiophene) brushes grafted from phosphonic acid monolayers using surface initiated polymerization can exhibit through-plane thermal conductivity greater than 2 W/(m K), a 6-fold increase compared to spin-coated poly(3-hexylthiophene) samples. The thickness of these films (10-40 nm) is somewhat less than that required in most applications, but the method demonstrates a route toward higher thermal conductivity in covalently grafted, aligned polymer films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b04429 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!