Hypophosphatemic rickets and short stature are observed in nephropathic cystinosis, an orphan autosomal recessive lysosomal storage disease due to a deficiency of cystinosin (CTNS gene). Although bone impairment is not common, it nevertheless appears to be more and more discussed by experts, even though the exact underlying pathophysiology is unclear. Four hypotheses are currently discussed to explain such impairment: copper deficiency, bone consequences of severe hypophosphatemic rickets during infancy, cysteamine toxicity and abnormal thyroid metabolism. In murine models, the invalidation of the CTNS gene is associated neither with renal phosphate wasting nor with renal failure, but causes severe osteopenia and growth retardation, thus raising the hypothesis of a specific underlying bone defect in cystinosis. Moreover, the in vitro ability of mesenchymal stromal cells isolated from bone marrow to differentiate along the osteoblastic lineage is reduced in patients with cystinosis as compared with cells obtained from healthy controls, this cellular abnormality being reverted after cysteamine treatment. From our experience of three pediatric patients with cystinosis and severe bone deformations having undergone a thorough biochemical evaluation, as well as a bone biopsy, we conclude that even though copper deficiency, high-doses cysteamine regimens and abnormal thyroid metabolism may worsen the bone picture in cystinosis patients, the exact pathophysiology of such impairment remains to be defined. The role of chronic hypoparathyroidism due to chronic phosphate wasting could also be discussed. In the future, larger and prospective studies should focus on this topic because of the potential major impact on patients' quality of life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988218PMC
http://dx.doi.org/10.1038/bonekey.2016.55DOI Listing

Publication Analysis

Top Keywords

hypophosphatemic rickets
8
ctns gene
8
copper deficiency
8
abnormal thyroid
8
thyroid metabolism
8
phosphate wasting
8
patients cystinosis
8
bone
7
cystinosis
6
skeletal implications
4

Similar Publications

18F-Sodium Fluoride PET/CT as a Tool to Assess Enthesopathies in X-Linked Hypophosphatemia.

Calcif Tissue Int

January 2025

Endocrinology Department, School of Medicine, Pontificia Universidad Católica de Chile, Av. Diagonal Paraguay 262, Cuarto Piso, Santiago, Chile.

X-linked hypophosphatemia (XLH) is a rare metabolic disorder characterized by elevated FGF23 and chronic hypophosphatemia, leading to impaired skeletal mineralization and enthesopathies that are associated with pain, stiffness, and diminished quality of life. The natural history of enthesopathies in XLH remains poorly defined, partly due to absence of a sensitive quantitative tool for assessment and monitoring. This study investigates the utility of 18F-NaF PET/CT scans in characterizing enthesopathies in XLH subjects.

View Article and Find Full Text PDF

Background: Limited research exists regarding the genetic profile, clinical characteristics, and outcomes of refractory rickets in children from India.

Methods: Patients with refractory rickets aged ≤ 18 years were enrolled. Data regarding clinical features, etiology, genotype-phenotype correlation, and estimated glomerular filtration rate (eGFR) were recorded.

View Article and Find Full Text PDF

Hereditary tyrosinemia type 1 (HT-1) is an inborn error of metabolism caused by a defect in tyrosine (tyr) degradation. This defect results in the accumulation of succinylacetone (SA), causing liver failure with a high risk of hepatocarcinoma and kidney injury, leading in turn to Fanconi syndrome with urine loss of phosphate and secondary hypophosphatemic rickets (HR). HT-1 diagnosis is usually made in infants with acute or chronic liver failure or by neonatal screening programs.

View Article and Find Full Text PDF

Tertiary hyperparathyroidism is characterized by hypercalcemia resulting from autonomous parathyroid hormone production and usually occurs after a prolonged period of secondary hyperparathyroidism. This condition can be a complication of X-linked hypophosphatemia (XLH), a rare genetic disease characterized by renal phosphate loss and consequent hypophosphatemia. Parathyroidectomy is considered the first-line therapy but surgical intervention can be complicated by hungry bone syndrome.

View Article and Find Full Text PDF

Clinical, Radiographic, and Molecular Analysis of Patients with X-Linked Hypophosphatemic Rickets: Looking for Phenotype-Genotype Correlation.

Diagnostics (Basel)

January 2025

Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Ciudad de México 14389, Mexico.

Background/objectives: X-linked hypophosphataemic rickets (XLH) represents the most frequent type of rickets from genetic origin, it is caused by mutations on the gene. The main clinical manifestations are short stature and bone deformities. Phenotype variation is observed at the intrafamily and interfamily level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!