Recently, iron oxide nanoparticles (NPs) have attracted much consideration due to their unique properties, such as superparamagnetism, surface-to-volume ratio, greater surface area, and easy separation methodology. Various physical, chemical, and biological methods have been adopted to synthesize magnetic NPs with suitable surface chemistry. This review summarizes the methods for the preparation of iron oxide NPs, size and morphology control, and magnetic properties with recent bioengineering, commercial, and industrial applications. Iron oxides exhibit great potential in the fields of life sciences such as biomedicine, agriculture, and environment. Nontoxic conduct and biocompatible applications of magnetic NPs can be enriched further by special surface coating with organic or inorganic molecules, including surfactants, drugs, proteins, starches, enzymes, antibodies, nucleotides, nonionic detergents, and polyelectrolytes. Magnetic NPs can also be directed to an organ, tissue, or tumor using an external magnetic field for hyperthermic treatment of patients. Keeping in mind the current interest in iron NPs, this review is designed to report recent information from synthesis to characterization, and applications of iron NPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4998023PMC
http://dx.doi.org/10.2147/NSA.S99986DOI Listing

Publication Analysis

Top Keywords

iron oxide
12
magnetic nps
12
synthesis characterization
8
characterization applications
8
oxide nanoparticles
8
applications iron
8
iron nps
8
nps
7
iron
6
magnetic
5

Similar Publications

Magnetically targeted delivery of probiotics for controlled residence and accumulation in the intestine.

Nanoscale

March 2025

Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.

The effectiveness of orally delivered probiotics in treating gastrointestinal diseases is restricted by inadequate gut retention. In this study, we present a magnetically controlled strategy for probiotic delivery, which enables controlled accumulation and residence of probiotics in the intestine. The magnetically controlled probiotic is established by attaching amino-modified iron oxide (FeO-NH NPs) to polydopamine-coated GG (LGG@P) through electrostatic self-assembly and named as LGG@P@FeO.

View Article and Find Full Text PDF

Biosynthesis Scale-Up Process for Magnetic Iron-Oxide Nanoparticles Using Extract and Their Separation Properties in Lubricant-Water Emulsions.

Nanomaterials (Basel)

March 2025

Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Peru.

The use of natural organic extracts in nanoparticle synthesis can reduce environmental impacts and reagent costs. With that purpose in mind, a novel biosynthesis procedure for the formation of magnetic iron-oxide nanoparticles (IONPs) using extract in an aqueous medium has been systematically carried out. First, the biosynthesis was optimized for various extract concentrations, prepared by decoction and infusion methods, and yielded IONPs with sizes from 4 to 9 nm.

View Article and Find Full Text PDF

Multiscale Mechanical Characterization of Mineral-Reinforced Wood Cell Walls.

ACS Appl Mater Interfaces

March 2025

Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Rd, Boca Raton, Florida 33431, United States.

Studying the multiscale mechanics of bio-based composites offers unique perspectives on underlying structure-property relations. Cellular materials, such as wood, are highly organized, hierarchical assemblies of load-bearing structural elements that respond to mechanical stimuli at the microscopic, mesoscopic and macroscopic scale. In this study, we modified oak wood with nanocrystalline ferrihydrite, a widespread ferric oxyhydroxide mineral, and characterized the resulting mechanical properties of the composite at various levels of organization.

View Article and Find Full Text PDF

The long ring pommel Dao (a kind of single-edged blade), a significant indigenous Chinese weaponry innovation of the Western Han Dynasty, is researched this study. Employing a comparative research methodology, we conduct a scientific analysis of samples excavated from the tombs of marquisates across various regions of China, spanning from the northern to the southern extremities. This analysis encompasses metallographic examination, inclusion composition analysis, and scanning electron microscopy (SEM), complemented by the application of a metallurgical kinetic model to reconstruct key smelting operations.

View Article and Find Full Text PDF

This study investigates the effect of varying iron-to-nickel ratios on the catalytic performance of Fe-Ni oxide nanoparticles (NPs) for the oxygen evolution reaction (OER). Addressing the issue of high energy wastage due to large overpotentials in OER, we synthesized and characterized different NP catalysts with different Fe: Ni oxide ratios. Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectroscopy (EDS), and X-ray Diffraction (XRD) were employed to determine the morphology, elemental and phase composition of the NPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!