Chronic exposure to opioids induces adaptations in brain function that lead to the formation of the behavioral and physiological symptoms of drug dependence and addiction. Animal models commonly used to test these symptoms typically last less than two weeks, which is presumably too short to observe the alterations in the brain that accompany drug addiction. Here, we analyzed the phenotypic and molecular effects of nearly lifelong morphine or saccharin intake in C57BL/6J mice. We used multiple paradigms to evaluate the symptoms of compulsive drug intake: a progressive ratio schedule, intermittent access and a schedule involving a risk of punishment were programmed into an automated IntelliCage system. Gene expression profiles were evaluated in the striatum using whole-genome microarrays and further validated using quantitative polymerase chain reaction in the striatum and the prefrontal cortex. Mice voluntary self-administering morphine showed addiction-related behavioral pattern that included: higher motivation to work for a drug reward, increased reward seeking and increased craving. The analysis of molecular changes revealed a tolerance effect in the transcriptional response to morphine injection (20 mg/kg, ip), as well as some long-lasting alterations in gene expression profiles between the analyzed groups of animals. Interestingly, among the morphine-drinking animals, certain transcriptional profiles were found to be associated with alterations in behavior. In conclusion, our model represents a novel approach for investigating the behavioral and molecular mechanisms underlying opioid addiction. Prolonged morphine intake caused adaptive processes in the brain that manifested as altered behavior and transcriptional sensitivity to opioids.

Download full-text PDF

Source
http://dx.doi.org/10.1111/adb.12449DOI Listing

Publication Analysis

Top Keywords

gene expression
8
expression profiles
8
behavioral
4
behavioral transcriptional
4
transcriptional patterns
4
patterns protracted
4
protracted opioid
4
opioid self-administration
4
self-administration mice
4
mice chronic
4

Similar Publications

Therapeutic Effects of GDF6-Overexpressing Mesenchymal Stem Cells through Upregulation of the GDF15/SIRT1 Axis in Age-Related Hearing Loss.

Front Biosci (Landmark Ed)

January 2025

Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.

Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.

Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.

View Article and Find Full Text PDF

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.

Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!