Human papillomaviruses enter host cells via a clathrin-independent endocytic pathway involving tetraspanin proteins. However, post-endocytic trafficking required for virus capsid disassembly remains unclear. Here we demonstrate that the early trafficking pathway of internalised HPV particles involves tetraspanin CD63, syntenin-1 and ESCRT-associated adaptor protein ALIX. Following internalisation, viral particles are found in CD63-positive endosomes recruiting syntenin-1, a CD63-interacting adaptor protein. Electron microscopy and immunofluorescence experiments indicate that the CD63-syntenin-1 complex controls delivery of internalised viral particles to multivesicular endosomes. Accordingly, infectivity of high-risk HPV types 16, 18 and 31 as well as disassembly and post-uncoating processing of viral particles was markedly suppressed in CD63 or syntenin-1 depleted cells. Our analyses also present the syntenin-1 interacting protein ALIX as critical for HPV infection and CD63-syntenin-1-ALIX complex formation as a prerequisite for intracellular transport enabling viral capsid disassembly. Thus, our results identify the CD63-syntenin-1-ALIX complex as a key regulatory component in post-endocytic HPV trafficking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5006017PMC
http://dx.doi.org/10.1038/srep32337DOI Listing

Publication Analysis

Top Keywords

viral particles
12
cd63-syntenin-1 complex
8
complex controls
8
post-endocytic trafficking
8
human papillomaviruses
8
capsid disassembly
8
cd63 syntenin-1
8
adaptor protein
8
protein alix
8
cd63-syntenin-1-alix complex
8

Similar Publications

Real-time monitoring by interferometric light microscopy of phage suspensions for personalised phage therapy.

Sci Rep

December 2024

Pharmacy Department, Hospices Civils de Lyon, Hôpital E. Herriot, Plateforme FRIPHARM, 69437, Lyon, France.

Phage therapy uses viruses (phages) against antibiotic resistance. Tailoring treatments to specific patient strains requires stocks of various highly concentrated purified phages. It, therefore, faces challenges: titration duration and specificity to a phage/bacteria couple; purification affecting stability; and highly concentrated suspensions tending to aggregate.

View Article and Find Full Text PDF

The lack of a robust system to reproducibly propagate HRV-C, a family of viruses refractory to cultivation in standard cell lines, has substantially hindered our understanding of this common respiratory pathogen. We sought to develop an organoid-based system to reproducibly propagate HRV-C, and characterize virus-host interaction using respiratory organoids. We demonstrate that airway organoids sustain serial virus passage with the aid of CYT387-mediated immunosuppression, whereas nasal organoids that more closely simulate the upper airway achieve this without any intervention.

View Article and Find Full Text PDF

AAV vectors show promise for gene therapy; however, kidney gene transfer remains challenging. Here we conduct a barcode-seq-based comparison of 47 AAV capsids administered through different routes in mice, followed by individual validation. We find that local delivery of AAV-KP1, but not AAV9, via the renal vein or pelvis effectively transduces proximal tubules with minimal off-target liver transduction, while systemic AAV9, but not AAV-KP1, enhances proximal tubule and podocyte transduction in chronic kidney disease.

View Article and Find Full Text PDF

Background: The hand, foot and mouth disease (HFMD) was caused by species of Enterovirus A and Enterovirus B in the Asian-Pacific region. Broad-spectrum monoclonal antibodies (mAb) that can bind multiple serotypes of enteroviruses have gradually become a research hotspot in the diagnosis, prevention and treatment of HFMD.

Methods: In this study, a mAb 1H4 was obtained using monoclonal antibody technology by immunizing purified virus particles of Coxsackievirus A5 (CV-A5).

View Article and Find Full Text PDF

Isolation of Viral Biofilms From HTLV-1 Chronically Infected T Cells and Integrity Analysis.

Bio Protoc

December 2024

Infectious Disease Research Institute of Montpellier (IRIM), UMR 9004 CNRS, University of Montpellier, Montpellier, France.

The human T-lymphotropic virus type-1 (HTLV-1) is an oncogenic retrovirus that predominantly spreads through cell-to-cell contact due to the limited infectivity of cell-free viruses. Among various modes of intercellular transmission, HTLV-1 biofilms emerge as adhesive structures, polarized at the cell surface, which encapsulate virions within a protective matrix. This biofilm is supposed to facilitate simultaneous virion delivery during infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!