A Cytocompatible Robust Hybrid Conducting Polymer Hydrogel for Use in a Magnesium Battery.

Adv Mater

Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales, 2522, Australia.

Published: November 2016

A cytocompatible robust hybrid conducting-polymer hydrogel, polypyrrole/poly(3,4-ethylenedioxythiophene) is developed. This hydrogel is suitable for electrode-cellular applications. It demonstrates a high battery performance when coupled with a bioresorbable Mg alloy in phosphate-buffered saline. A combination of suitable mechanical and electrochemical properties makes this hydrogel a promising material for bionic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201601755DOI Listing

Publication Analysis

Top Keywords

cytocompatible robust
8
robust hybrid
8
hybrid conducting
4
conducting polymer
4
hydrogel
4
polymer hydrogel
4
hydrogel magnesium
4
magnesium battery
4
battery cytocompatible
4
hybrid conducting-polymer
4

Similar Publications

To develop a scaffold suitable for simultaneous repair of both spinal cord injury (SCI) and sciatic nerve injury (SNI), we designed a multilayer composite membrane capable of unidirectional and sustained release of two factors: nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). The membrane's morphology, mechanical properties, cytocompatibility, drug release kinetics, swelling, and degradation behavior were thoroughly characterized. Additionally, its ability to promote the differentiation of PC-12 cells was assessed.

View Article and Find Full Text PDF

"Reactive" Chemical Strategy to Attain Substrate Independent "" Omniphobic Solid Anti-Biofouling Coatings.

Adv Funct Mater

September 2024

School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America.

Covalent and defect-free surface-grafted solid lubricating chains that can impart slippery behavior have proven advantageous over lubricant infused and textured anti-wetting surfaces. Herein, the co-hydrolysis and co-condensation of a mixture of organosilanes followed by the epoxy-amine ring opening reaction at the interface results in a highly robust, transparent and solid slippery omniphobic coating (LL-OSC). The presence of the epoxy-terminated organosilane a) acts as a molecular spacer in between the low-surface energy, rigid fluorine terminated silane and b) provides 'reactive' epoxy groups for covalent binding to a pre-functionalized amine surface for potential applicability in droplet transport and manipulation, diagnostics etc.

View Article and Find Full Text PDF

Self-Assembled EGCG Nanoparticles with Enhanced Intracellular ROS Scavenging for Skin Radioprotection.

Int J Nanomedicine

December 2024

Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People's Republic of China.

Purpose: Skin radiation damage is a prevalent form of tissue injury encountered during radiotherapy, radiation accidents, and occupational exposure. The only clinically approved radioprotective agent, amifostine, is associated with numerous side effects, underscoring the urgent need for the development of safe and effective radioprotective agents. Natural products with reductive properties possess high antioxidant activity and biocompatibility, but their low bioavailability limits their radioprotective efficacy and clinical application.

View Article and Find Full Text PDF

Synthesis, fluorescence and theoretical insights into a novel FRET-based dansyl-rhodamine sensor for the in vitro detection of toxic bioaccumulated Hg(II) ions.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

LAQV-REQUIMTE, Department of Chemistry and Biochemistry (DQB), Faculty of Sciences, University of Porto (FCUP), 4169-007 Porto, Portugal. Electronic address:

This work describes the successful design and synthesis of a new fluorescence resonance energy transfer (FRET)-based sensor, denoted as RD1. This sensor incorporates a robust dual-fluorophore design, which combines a rhodamine and a dansyl derivative, functionalized with a thiosemicarbazide group that acts as Hg(II) specific recognition site. A synthetic pathway was developed that allowed the efficient synthesis of RD1 with a remarkable overall yield of 44% over four steps, through microwave-assisted protocols.

View Article and Find Full Text PDF

Addressing a critical challenge in current tissue-engineering practices, this study aims to enhance vascularization in 3D porous scaffolds by incorporating bioceramics laden with pro-angiogenic ions. Specifically, freeze-dried gelatin-based scaffolds were infused with sol-gel-derived powders of Cu-doped akermanite (CaMgSi2O) and bredigite (CaMgSiO) at various concentrations (10, 20, and 30 wt%). The scaffolds were initially characterized for their structural integrity, biodegradability, swelling behavior, impact on physiological pH, and cytocompatibility with human umbilical vein endothelial cells (HUVECs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!