A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A neuromorphic model of motor overflow in focal hand dystonia due to correlated sensory input. | LitMetric

A neuromorphic model of motor overflow in focal hand dystonia due to correlated sensory input.

J Neural Eng

Department of Rehabilitation Medicine, Emory University, 1441 Clifton Rd, Atlanta, GA 30322, USA.

Published: October 2016

Objective: Motor overflow is a common and frustrating symptom of dystonia, manifested as unintentional muscle contraction that occurs during an intended voluntary movement. Although it is suspected that motor overflow is due to cortical disorganization in some types of dystonia (e.g. focal hand dystonia), it remains elusive which mechanisms could initiate and, more importantly, perpetuate motor overflow. We hypothesize that distinct motor elements have low risk of motor overflow if their sensory inputs remain statistically independent. But when provided with correlated sensory inputs, pre-existing crosstalk among sensory projections will grow under spike-timing-dependent-plasticity (STDP) and eventually produce irreversible motor overflow.

Approach: We emulated a simplified neuromuscular system comprising two anatomically distinct digital muscles innervated by two layers of spiking neurons with STDP. The synaptic connections between layers included crosstalk connections. The input neurons received either independent or correlated sensory drive during 4 days of continuous excitation. The emulation is critically enabled and accelerated by our neuromorphic hardware created in previous work.

Main Results: When driven by correlated sensory inputs, the crosstalk synapses gained weight and produced prominent motor overflow; the growth of crosstalk synapses resulted in enlarged sensory representation reflecting cortical reorganization. The overflow failed to recede when the inputs resumed their original uncorrelated statistics. In the control group, no motor overflow was observed.

Significance: Although our model is a highly simplified and limited representation of the human sensorimotor system, it allows us to explain how correlated sensory input to anatomically distinct muscles is by itself sufficient to cause persistent and irreversible motor overflow. Further studies are needed to locate the source of correlation in sensory input.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2560/13/5/055001DOI Listing

Publication Analysis

Top Keywords

motor overflow
32
correlated sensory
20
sensory input
12
sensory inputs
12
motor
10
overflow
9
sensory
9
focal hand
8
hand dystonia
8
irreversible motor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!