Plants are dependent on their root systems for survival, and thus are defended from belowground enemies by a range of strategies, including plant secondary metabolites (PSMs). These compounds vary among species, and an understanding of this variation may provide generality in predicting the susceptibility of forest trees to belowground enemies and the quality of their organic matter input to soil. Here, we investigated phylogenetic patterns in the root chemistry of species within the genus Eucalyptus. Given the known diversity of PSMs in eucalypt foliage, we hypothesized that (i) the range and concentrations of PSMs and carbohydrates in roots vary among Eucalyptus species, and (ii) that phylogenetic relationships explain a significant component of this variation. To test for interspecific variation in root chemistry and the influence of tree phylogeny, we grew 24 Eucalyptus species representing two subgenera (Eucalyptus and Symphyomyrtus) in a common garden for two years. Fine root samples were collected from each species and analyzed for total phenolics, condensed tannins, carbohydrates, terpenes, and formylated phloroglucinol compounds. Compounds displaying significant interspecific variation were mapped onto a molecular phylogeny and tested for phylogenetic signal. Although all targeted groups of compounds were present, we found that phenolics dominated root defenses and that all phenolic traits displayed significant interspecific variation. Further, these compounds displayed a significant phylogenetic signal. Overall, our results suggest that within these representatives of genus Eucalyptus, more closely related species have more similar root chemistry, which may influence their susceptibility to belowground enemies and soil organic matter accrual.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10886-016-0750-7DOI Listing

Publication Analysis

Top Keywords

root chemistry
16
eucalyptus species
12
belowground enemies
12
interspecific variation
12
variation root
8
organic matter
8
genus eucalyptus
8
chemistry influence
8
phylogenetic signal
8
root
7

Similar Publications

Curcumae Longae Rhizoma (CLRh), Curcumae Radix (CRa), and Curcumae Rhizoma (CRh), derived from the different medicinal parts of the species, are blood-activating analgesics commonly used for promoting blood circulation and relieving pain. Due to their certain similarities in chemical composition and pharmacological effects, these three herbs exhibit a high risk associated with mixing and indiscriminate use. The diverse methods used for distinguishing the medicinal origins are complex, time-consuming, and limited to intraspecific differentiation, which are not suitable for rapid and systematic identification.

View Article and Find Full Text PDF

Berk Alleviated Atherosclerosis Symptoms via Nuclear Factor-Kappa B-Mediated Inflammatory Response in ApoE Mice.

Nutrients

December 2024

Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.

Background: Atherosclerosis, a persistent inflammatory disease marked by the presence of atherosclerotic plaques or fibrous plaques, is a significant contributor to the onset of the development of cardiovascular disease. Berk contains various active ingredients that have anti-inflammatory, antioxidant, and hypolipidemic properties. Nevertheless, the potential effects of on atherosclerosis have not been systematically reported.

View Article and Find Full Text PDF

: We assessed the influence of long-term injection of magnoflorine (MAG) on memory acquisition in mice for the first time. : This isoquinoline alkaloid that belongs to the aporphines was isolated from the roots of by centrifugal partition chromatography (CPC) using a biphasic solvent system composed of chloroform: methanol: water in the ratio 4:3:3 (//) with 20 mM of hydrochloric acid and triethylamine, within 64 min. : Our results indicated that long-term injection of MAG 20 mg/kg dose improve the long-term memory acquisition in mice that were evaluated in the passive avoidance (PA) test with no toxicity records.

View Article and Find Full Text PDF

The prevalence of urological diseases increases with age, and lower urinary tract symptoms (LUTSs) are the most common problem. Natural compounds with minimal side effects for the improvement in LUTSs are of ongoing interest. extract (SAGX) has shown potential in preclinical studies for its effects on LUTSs.

View Article and Find Full Text PDF

Background: Inflammation-induced oxidative stress is a pathophysiological mechanism of inflammatory diseases. Treatments targeting oxidative stress can reduce inflammatory tissue damage.

Objectives: This study aimed to conduct phytochemical analysis and evaluate the antioxidant effects of the hydroalcoholic extract of blossoms () and rhizomes ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!