Objective: To explore the molecular basis for a CD36 deficiency individual and distribution of CD36 gene mutation in Guangxi population.

Methods: A female individual was studied. CD36 phenotype was detected by monoclonal antibody immobilization of platelet antigens assay (MAIPA) and flow cytometry (FCM). The coding regions of the CD36 gene were sequenced. A DNA-based polymerase chain reaction-sequence specific primer (PCR-SSP) assay was used to verify the identified mutation. Cell lines expressing the mutant and wild-type CD36[CD36(MT) and CD36(WT)] were established, with the expression of CD36 determined by Western blotting. The distribution of CD36 gene mutation was investigated among 1010 unrelated individuals with the PCR-SSP assay.

Results: Both MAIPA and FCM assays showed that the patient had type II CD36 deficiency. DNA sequencing showed that she has carried a heterozygous mutation T538C (Trp180Arg) in the exon 6 of CD36. Sequencing of cDNA clone confirmed that there was a nucleotide substitution at position 538 (538T>C). Western blotting also confirmed that the CD36 did not express on the CD36(MT) cell line that expressed the 538C mutant, but did express on the CD36(WT) cell line. The novel CD36 mutation T538C was further verified with 100% concordance of genotyping results by DNA-based PCR-SSP assay and 1010 unrelated individuals. No CD36 538C allele was detected among the 1010 individuals.

Conclusion: This study has identified a novel CD36 mutation T538C(Trp180Arg)(GenBank: HM217022.1), and established a genotyping method for the novel sequence-specific primer PCR. The novel mutation is rare in Guangxi and can cause type II CD36 deficiency.

Download full-text PDF

Source
http://dx.doi.org/10.3760/cma.j.issn.1003-9406.2016.05.008DOI Listing

Publication Analysis

Top Keywords

cd36 deficiency
16
cd36
14
novel cd36
12
cd36 mutation
12
mutation t538c
12
cd36 gene
12
mutation
9
t538c trp180arg
8
genotyping method
8
method novel
8

Similar Publications

CD36 Deficiency.

QJM

December 2024

Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.

View Article and Find Full Text PDF
Article Synopsis
  • Microvascular dysfunction contributes to insulin resistance, particularly in individuals with a genetic variant (G allele) that reduces CD36 expression, impacting blood vessel function and glucose disposal.* -
  • Through various experimental methods, the study found that while CD36-deficient mice and humans showed improved insulin-stimulated glucose disposal, they had issues with blood volume response and vascular compliance, indicating a paradoxical relationship between microvascular resistance and insulin sensitivity.* -
  • The findings suggest that while CD36 deficiency may enhance glucose disposal efficiency, it simultaneously hampers the microvasculature's response to insulin, affecting oxygen delivery and energy metabolism in muscle and heart tissues.*
View Article and Find Full Text PDF

The type 2 scavenger receptor CD36 functions not only as a long chain fatty acid transporter, but also as a pro-inflammatory mediator. Ceramide is the simple N-acylated form of sphingosine and exerts distinct biological activity depending on its acyl chain length. Six ceramide synthases (CerS) in mammals determine the chain length of ceramide species, and CerS6 mainly produces C16-ceramide.

View Article and Find Full Text PDF

Haplotypes analysis reveals the genetic basis of type I CD36 deficiency.

Sci Rep

October 2024

Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, China.

CD36, also known as glycoprotein IV, is classified into two distinct subgroups based on the presence or absence of its expression on monocytes. The CD36 gene spans approximately 50,000 base pairs. Historically, research has focused on identifying CD36 mutations through Sanger sequencing and next-generation sequencing (NGS), with limited exploration of haplotypes.

View Article and Find Full Text PDF

Visceral white adipose tissues (WAT) regulate systemic lipid metabolism and inflammation. Dysfunctional WAT drive chronic inflammation and facilitate atherosclerosis. Adipose tissue-associated macrophages (ATM) are the predominant immune cells in WAT, but their heterogeneity and phenotypes are poorly defined during atherogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!