Thromboxane A2, prostaglandin H2, a series of chemically stable cyclic endoperoxide analogues (U 46619, U 44069, ONO 11113, 9, 11, diazo PGH2 and SQ 26655) and different isomers of SQ 26655 were analysed for their spatial configuration by conformational analysis in a simulated membrane-water interface environment with a "structure tree" procedure already described for prostaglandins, leukotrienes and lipoxins. The conformers derived from the structure tree and with a high probability of existence are presented. A new method allows one to visualize the surface charge density of the calculated molecules. The spatial configuration and the surface charge density of each molecule are compared to their known order of competition binding to the putative TXA2/PGH2 receptor of platelets. The conformational and charge density analysis merely shows that the different stereochemistry of these molecules lead to spatial conformation, that mimics (agonists), or that are far from (antagonists) the TXA2/PGH2 conformation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-2952(89)90087-7DOI Listing

Publication Analysis

Top Keywords

charge density
12
spatial configuration
8
surface charge
8
physico-chemical properties
4
properties prostaglandins
4
prostaglandins pharmacological
4
pharmacological compounds
4
compounds theoretical
4
theoretical study
4
study conformational
4

Similar Publications

NH-Modulated Cathodic Interfacial Spatial Charge Redistribution for High-Performance Dual-Ion Capacitors.

Nanomicro Lett

January 2025

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.

Compared with Zn, the current mainly reported charge carrier for zinc hybrid capacitors, small-hydrated-sized and light-weight NH is expected as a better one to mediate cathodic interfacial electrochemical behaviors, yet has not been unraveled. Here we propose an NH-modulated cationic solvation strategy to optimize cathodic spatial charge distribution and achieve dynamic Zn/NH co-storage for boosting Zinc hybrid capacitors. Owing to the hierarchical cationic solvated structure in hybrid Zn(CFSO)-NHCFSO electrolyte, high-reactive Zn and small-hydrate-sized NH(HO) induce cathodic interfacial Helmholtz plane reconfiguration, thus effectively enhancing the spatial charge density to activate 20% capacity enhancement.

View Article and Find Full Text PDF

DFT study of the binary intermetallic compound NdMn in different polytypic phases.

J Mol Model

January 2025

Department of Physics, University of Malakand, Chakdara, Dir (Lower), 18800, KP, Pakistan.

Context: The structural stability, ground state magnetic order, electronic, elastic and thermoelectric properties of NdMn in the C15, C14 and C36 polytypic phases is investigated. The magnetic phase optimization and magnetic susceptibility reveal that NdMn is antiferromagnetic (AFM) in C36 phase; and paramagnetic (PM) in C14 and C15 phases respectively. The band profiles and electrical resistivity show the metallic nature in all these polytypic phases and reveal that the C36 phase possesses smaller resistivity.

View Article and Find Full Text PDF

Selective sensing of NH and NO on WSe monolayers based on defect concentration regulation.

Phys Chem Chem Phys

January 2025

College of Chemistry and Chemical Engineering, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, P. R. China.

Defect engineering is an important method to control material properties. In this paper, large-scale sampling density functional theory (DFT) was used to investigate the adsorption and sensing behavior of NH and NO on a WSe monolayer, with a focus on the effect of selenium vacancy concentration. The results demonstrate that selectivity is inhibited on a perfect monolayer due to the similar adsorption energy of the two gases, NH and NO, while selectivity can be obtained for both of them under different selenium vacancy concentrations (NH about 2-5.

View Article and Find Full Text PDF

Expansion counteraction effect assisted vanadate with rich oxygen vacancies as a high cycling stability cathode for aqueous zinc-ion batteries.

Phys Chem Chem Phys

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering and School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

In this study, a novel tunnel structure vanadate NaVO (NaVO) cathode for aqueous zinc ion batteries (AZIBs) is facilely fabricated by thermal decomposition of polyoxovanadate containing NH ions. The NaVO cathode is characterized by abundant oxygen vacancies and nanometer dimensions. These attributes can offer extra reaction sites and suppress structural collapse during circulation.

View Article and Find Full Text PDF

The crystal and electronic structure of ZrxTi1-xSe2 (0 < x < 1) compounds and their electrical resistivity have been studied in detail for the first time. A combination of soft x-ray spectroscopic methods (XPS, XAS, and ResPES) was used to investigate the electronic structure. The lattice parameters as a function of the metal concentration x obey Vegard's law.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!