The zebrafish embryo has been proposed as a 'bridge model' to study the effects of cigarette smoke on early development. Previous studies showed that exposure to total particulate matter (TPM) led to adverse effects in developing zebrafish, and suggested that the antioxidant and aryl hydrocarbon receptor (AHR) pathways play important roles. This study investigated the roles of these two pathways in mediating TPM toxicity. The study consisted of four experiments. In experiment I, zebrafish embryos were exposed from 6h post fertilization (hpf) until 96hpf to TPM0.5 and TPM1.0 (corresponding to 0.5 and 1.0μg/mL equi-nicotine units) in the presence or absence of an antioxidant (N-acetyl cysteine/NAC) or a pro-oxidant (buthionine sulfoximine/BSO). In experiment II, TPM exposures were performed in embryos that were microinjected with nuclear factor erythroid 2-related factor 2 (Nrf2), AHR2, cytochrome P450 1A (CYP1A), or CYP1B1 morpholinos, and deformities were assessed. In experiment III, embryos were exposed to TPM, and embryos/larvae were collected at 24, 48, 72, and 96hpf to assess several genes associated with the antioxidant and AHR pathways. Lastly, experiment IV assessed the activity and protein levels of CYP1A and CYP1B1 after exposure to TPM. We demonstrate that the incidence of TPM-induced deformities was generally not affected by NAC/BSO treatments or Nrf2 knockdown. In contrast, AHR2 knockdown reduced, while CYP1A or CYP1B1 knockdowns elevated the incidence of some deformities. Moreover, as shown by gene expression the AHR pathway, but not the antioxidant pathway, was induced in response to TPM exposure, providing further evidence for its importance in mediating TPM toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2016.08.024DOI Listing

Publication Analysis

Top Keywords

cyp1a cyp1b1
12
total particulate
8
particulate matter
8
zebrafish embryos
8
ahr pathways
8
mediating tpm
8
tpm toxicity
8
embryos exposed
8
tpm
7
ahr2 morpholino
4

Similar Publications

Aryl hydrocarbon receptor-dependent toxicity by retene requires metabolic competence.

Toxicol Sci

November 2024

Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States.

Article Synopsis
  • Polycyclic aromatic hydrocarbons (PAHs) are diverse environmental compounds known for their varying toxic effects, often activating the aryl hydrocarbon receptor (AHR) and influencing gene expression, but their mechanisms can differ.
  • The study specifically examined retene, which causes developmental toxicity in zebrafish by activating Ahr2 through its metabolites, rather than directly activating the AHR.
  • Research found that the cyp1a enzyme plays a key role in the toxicity of retene, with cyp1a-null zebrafish showing heightened sensitivity, while exposure timing and metabolite presence were critical for understanding the toxicity's onset.
View Article and Find Full Text PDF

Background: Anthracyclines such as doxorubicin (Dox) are highly effective anti-tumor agents, but their use is limited by dose-dependent cardiomyopathy and heart failure. Our laboratory previously reported that induction of cytochrome P450 family 1 (Cyp1) enzymes contributes to acute Dox cardiotoxicity in zebrafish and in mice, and that potent Cyp1 inhibitors prevent cardiotoxicity. However, the role of Cyp1 enzymes in chronic Dox cardiomyopathy, as well as the mechanisms underlying cardioprotection associated with Cyp1 inhibition, have not been fully elucidated.

View Article and Find Full Text PDF

Lung cancer is the leading cause of cancer death worldwide. Polycyclic aromatic hydrocarbons (PAHs) are metabolized by the cytochrome P450 (CYP)1A and 1B1 to DNA-reactive metabolites, which could lead to mutations in critical genes, eventually resulting in cancer. Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial against cancers.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the relationship between genetic variations in Cytochrome P450 (CYP) enzymes and the risk of gastrointestinal (GI) cancer in a rural population of Maharashtra, focusing on specific gene polymorphisms.
  • Using a case-control design with 200 GI cancer patients and 200 healthy controls, the researchers employed the PCR-RFLP method to analyze single-nucleotide polymorphisms (SNPs) in several CYP genes.
  • The results highlight that the variant allele of CYP2B6*5 is significantly linked to an increased risk of GI cancer, while certain alleles of CYP1B1 show a protective effect against the disease.
View Article and Find Full Text PDF

Background: Last few decades, multiple studies all over the world revealed the association of genetic polymorphism in cytochrome P450 (CYP) genes with risk of developing different type of cancers, but contradictory outcomes were evidenced in case of cervical cancer (CC) risk. Therefore, the discrepancies in earlier reports influenced us to evaluate the association of CYP1A1*2A rs4646903, CYP1B1*3 rs1056836, CYP2C8*2 rs11572103, CYP2C9*2 rs1799853, CYP2C9*3 rs1057910, and CYP2C19*2 rs4244285 polymorphisms and CC susceptibility in the women of rural population of Maharashtra.

Materials And Methods: In this case-control study, genetic association of the polymorphisms in CYP genes was studied by using polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!