Hofmeister anion effects on adsorption kinetics of the positively charged lysozyme (pH < pI) at an air-water interface were studied by surface tension measurements and time-resolved X-ray reflectometry. In the salt-free solution, the protein adsorption rate increases with decreasing the net positive charge of lysozyme. When salt ions are dissolved in water, the protein adsorption rate drastically increases, and the rate is following an inverse Hoffmeister series (Br(-) > Cl(-) > F(-)). This is the result of the strongly polarized halide anion Br(-) being attracted to the adsorbed protein layer due to strong interaction with local electric field, while weakly polarized anion F(-) having no ability to penetrate the protein layer. In X-ray reflection studies, we observed that the lysozyme molecules initially adsorbed on the air-water interface have a flat unfolded structure as previously reported in the salt-free solution. In contrast, in the concentrated salt solutions, the lysozyme molecules begin to refold during adsorption. This protein refolding as a result of protein-protein rearrangements may be a precursor phenomenon of crystallization. The refolding is most significant for Cl(-), which is a good crystallization agent, whereas it is less observed for the strongly hydrated F(-). It is widely known in the bulk state that kosmotropic anions tend to precipitate proteins but at the same time stabilize proteins against denaturing. On the other hand, at the air-water interface where adsorbed proteins usually unfold, we observed chaotropic anions strongly bound to proteins that reduce electrostatic repulsion between protein molecules, and subsequently they induce protein refolding whereas the kosmotropic anions do not.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.6b02352DOI Listing

Publication Analysis

Top Keywords

air-water interface
16
protein adsorption
12
hofmeister anion
8
anion effects
8
protein
8
salt-free solution
8
adsorption rate
8
protein layer
8
lysozyme molecules
8
protein refolding
8

Similar Publications

Effect of Various Nanofillers on Piezoelectric Nanogenerator Performance of P(VDF-TrFE) Nanocomposite Thin Film.

Nanomaterials (Basel)

March 2025

Department of Chemical and Biochemical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea.

Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low piezoelectric properties of polymer-based PENGs. In this study, we investigated the effect of various nanofillers such as titania (TiO), zinc oxide (ZnO), reduced graphene oxide (rGO), and lead zirconate titanate (PZT) on the PENG performance of the nanocomposite thin films containing the nanofillers in poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)) matrix.

View Article and Find Full Text PDF

Innovations in self-assembly and aggregate engineering have led to membranes that better balance water permeability with salt rejection, overcoming traditional trade-offs. Here we demonstrate a strategy that uses multivalent H-bond interactions at the nano-confined space to manipulate controllable and organized crystallization. Specifically, we design amphiphilic oligomers featuring hydrophobic segments with strongly polar end-capped motifs.

View Article and Find Full Text PDF

Foam stability critically determines the efficiency of the mineral flotation process. Although the mixed amine Gemini surfactant/anionic surfactants exhibit excellent flotation performance, atomic-level investigations of the mechanism of their impact on foam stability remain limited. This study employs molecular dynamics simulations to investigate the self-aggregation behavior of mixed amine Gemini surfactant/sodium oleate (NaOl) systems with varying spacer chain lengths at the air/water interface.

View Article and Find Full Text PDF

Ultraviolet light-induced homolysis of hydrogen peroxide (UV/HO) can generate powerful hydroxyl radicals (OH) for sustainable water purification. However, the efficiency of the conventional bulk-phase UV/HO system is limited by the low yield and utilization of OH, in turn necessitating high UV energy input and long purification period. In this study, we present an innovative UV/HO microdroplet system for enhanced pollutant degradation.

View Article and Find Full Text PDF

An environmental vulnerability index framework supporting targeted public health interventions at the census tracts level.

J Expo Sci Environ Epidemiol

March 2025

Center for Healthy Air Water and Soil, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY, USA.

Background: Analyzing and visualizing disparities in environmental risks can help assess place-based vulnerabilities and provide civic leaders and community members with essential data for promoting health equity and informing public health strategies.

Objective: We investigated the adaptation of a previously developed environmental vulnerability index to evaluate the cumulative impact of diverse stressors in Louisville Metro-Jefferson County, KY, with the goal of supporting multi-faceted targeted public health interventions at the census tract level.

Methods: We assessed countywide vulnerability variability using the Toxicological Prioritization Index interface across five domains with 32 publicly available data indicators, and modeled the effects of theoretical public health interventions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!