Bioaccumulation of polycyclic aromatic hydrocarbons, polychlorinated biphenyls and hexachlorobenzene by three Arctic benthic species from Kongsfjorden (Svalbard, Norway).

Mar Pollut Bull

Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands; IMARES, Institute for Marine Resources & Ecosystem Studies, Wageningen UR, P.O. Box 77, 4400 AB Yerseke, The Netherlands.

Published: November 2016

The predicted expansion of oil and gas (O&G) activities in the Arctic urges for a better understanding of impacts of these activities in this region. Here we investigated the influence of location, feeding strategy and animal size on the bioaccumulation of Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs) and Hexachlorobenzene (HCB) by three Arctic benthic species in Kongsfjorden (Svalbard, Norway). No toxicity was expected based on biota PAH critical body residues. Biota PCB levels were mainly below limit of detection, whereas samples were moderately polluted by HCB. PAH concentrations in biota and Biota Sediment Accumulation Factors (BSAFs) were generally higher in Blomstrandhalvøya than in Ny-Ålesund, which was explained by a higher abundance of black carbon in Ny-Ålesund harbour. BSAFs differed significantly among species and stations. We conclude that contaminant body residues are a less variable and more straightforward monitoring parameter than sediment concentrations or BSAFs in Arctic benthos.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2016.08.041DOI Listing

Publication Analysis

Top Keywords

bioaccumulation polycyclic
8
polycyclic aromatic
8
aromatic hydrocarbons
8
polychlorinated biphenyls
8
three arctic
8
arctic benthic
8
benthic species
8
species kongsfjorden
8
kongsfjorden svalbard
8
svalbard norway
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!